
Kombination von Maximum
Entropy Reinforcement Learning

mit Distributional Q-Value
Approximation

Am Beispiel Autonomes Fahren

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Tobias Kietreiber, BSc
Matrikelnummer 01526084

an der Fakultät für Mathematik und Geoinformation

der Technischen Universität Wien

Betreuung: Assoz. Prof. Dipl.-Ing. Dr. techn. Clemens Heitzinger

Wien, 16. Mai 2023
Tobias Kietreiber Clemens Heitzinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Combining Maximum Entropy
Reinforcement Learning with

Distributional Q-Value
Approximation Methods

At the Example of Autonomous Driving

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Technical Mathematics

by

Tobias Kietreiber, BSc
Registration Number 01526084

to the Faculty of Mathematics and Geoinformation

at the TU Wien

Advisor: Assoz. Prof. Dipl.-Ing. Dr. techn. Clemens Heitzinger

Vienna, 16th May, 2023
Tobias Kietreiber Clemens Heitzinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Tobias Kietreiber, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 16. Mai 2023
Tobias Kietreiber

v

Acknowledgements

First of all, I want to thank my advisor, Professor Clemens Heitzinger, for his guidance.
It was a lot of fun working on this thesis and it would not have been possible without
him.

Thanks as well to all my friends, especially Helmut Horvath for being a great project
partner, Alexander Grosz for introducing me to the topic of Reinforcement Learning
and countless fruitful discussions, Jakob Deutsch for helping me with the theory around
Wasserstein distances, and Luka Ilić and Alexander Grosz for proofreading this thesis.

Last, but definitely not least, I thank my family for always supporting me.

vii

Kurzfassung

Reinforcement Learning hat in den letzten Jahren sehr an Popularität gewonnen, da
damit komplexe Probleme nur mithilfe eines Belohnungssignals gelöst werden können,
besonders nachdem es auf moderne Deep Learning Architekturen ausgedehnt wurde.
Es werden laufend neue Erweiterungen entwickelt, darunter die Approximation der q-
Werte in Verteilung und Maximum Entropy Reinforcement Learning. Beide scheinen in
Umgebungen des autonomen Fahrens besonders gut zu funktionieren.

In dieser Arbeit werden diese beiden Methoden vorgestellt, indem zunächst ein kurzer
Überblick über bestehende Literatur gegeben und danach die Kombination der beiden
Methoden präsentiert wird. Schlussendlich werden wir experimentell im CARLA Simulator
zeigen, dass dies nicht nur funktioniert, sondern bei Problemen des autonomen Fahrens
auch zu besseren Ergebnissen führt.

ix

Abstract

Reinforcement Learning has gained a lot of popularity in recent years due to its capability
to learn complex tasks from just a reward signal, especially after the extension to
modern Deep Learning architectures. A number of improvements to the concept were
introduced, two of them being distributional q-value approximation and Maximum
Entropy Reinforcement Learning. In environments dealing with autonomous driving
problems, both seem to have a benefit on performance.

In this thesis, these two methods are introduced by giving a short overview of previous
work and the idea behind their combination is presented. Lastly, we will show through
experiments in the CARLA simulator that this combination not only works but is
generally superior in autonomous driving tasks.

xi

Contents

Kurzfassung ix

Abstract xi

Introduction 1

1 Reinforcement Learning Concepts 3
1.1 Basic Definitions . 3
1.2 Temporal Difference Learning . 7
1.3 Policy Gradient Methods . 10
1.4 Deep Reinforcement Learning . 12

2 Distributional RL 15
2.1 Categorical DQN . 16
2.2 Quantile Regression DQN . 19
2.3 Implicit Quantile Networks . 24

3 Soft Actor-Critic 27
3.1 Maximum Entropy Objective . 28
3.2 Theoretical Analysis . 29
3.3 Soft Actor-Critic, a Practical Approximation to Soft Policy Iteration . 31
3.4 Automatic Entropy Temperature Tuning 32
3.5 Discrete Variant . 33
3.6 Distributional Extension . 35

4 Experimental Results 39
4.1 Implementation Details . 39
4.2 Overview of the Environments . 40
4.3 Results . 43

5 Conclusion 51

A Hyperparameters 53
A.1 Stability – DQNs . 53

xiii

A.2 Stability – SACs . 56
A.3 Cruise Control . 59
A.4 Discrete Lane Keeping . 65
A.5 Discrete Lane Keeping – Lower Capacities 71
A.6 Continuous Lane Keeping . 73
A.7 Combined Adaptive . 76

Bibliography 79

Introduction

I was first introduced to Reinforcement Learning during a project concerning autonomous
driving in the CARLA simulator, [Dosovitskiy et al., 2017]. The way a car was able to
learn how to drive just from being told how well it was doing, even using only classical
algorithms that are now decades old, fascinated me. I then proceeded to dive into more
recent techniques using deep learning and distributional approximation methods, and
with that came a huge leap in performance, previously impossible challenges were easy for
those algorithms. I was then introduced to the Soft Actor Critic algorithm, the probably
most important representant of Maximum Entropy Reinforcement Learning, which has
an approach to exploration of the environment that is very well suited for autonomous
driving tasks. From this came the idea to combine the two, and the topic for this thesis
was decided.

Chapter 1 will serve as an introduction to the topic of Reinforcement Learning, presenting
a few selected topics we will need later on. Chapter 2 and 3 will describe the methods from
the title, distributional q-value approximation and Maximum Entropy Reinforcement
Learning’s most important representative, Soft Actor Critic. The theory behind those
methods will be presented with some select proofs to provide some insight into the inner
workings. After combining the two concepts at the end of Chapter 3, Chapter 4 will
feature some experimental results mainly around autonomous driving, and discussion of
these results.

A quick note on notation: This thesis combines quite a few books and papers, which all
use different notations. In the interest of uniformity, a common notation will be used for
all concepts, not the notation of the original work cited.

Furthermore, while striving to use as few abbreviations as possible, there are a couple
we will use throughout the thesis: PMF (probability mass function), PDF (probability
density function), and CDF (cumulative distribution function). Also, we will usually
refer to the algorithms in the established way, so e.g. for DQN we will always use the
abbreviation after introducing it.

1

CHAPTER 1
Reinforcement Learning Concepts

This chapter aims to first briefly introduce the basic ideas and terms behind Reinforcement
Learning and then extend them to use a modern Deep Learning framework.

1.1 Basic Definitions
All definitions and results of this and the two following sections are taken from
[Sutton and Barto, 2018], although sometimes generalized a bit to accommodate exten-
sions used in later chapters. For some of the proofs, additional detail is added.

1.1.1 Markov Decision Processes

The Markov Decision Process, or MDP for short, is a formalization of the type of problem
we want to solve with Reinforcement Learning. Informally they describe an environment
with discrete time steps, with which an agent can interact by executing an action that in
turn modifies the environment and yields a reward for the agent, see Figure 1.1. The
goal of Reinforcement Learning will be to make the agent choose actions in a way that
maximizes the sum of those rewards.

Definition 1.1 (Markov Decision Process). An MDP is a tuple (S,A,S0, p, γ), where

• S is a set of states,

• A is a set of actions,

• S0 ⊆ S is a set of starting states,

• p : S× [rmin, rmax]×S×A → R, rmin < rmax ∈ R is the so-called dynamics function
or transition function, representing the density function of the transition from a
state-action pair (s, a) to next state s′ and reward r,

3

1. Reinforcement Learning Concepts

• γ ∈ [0, 1] is the discount factor .

We call a (finite or infinite) series of random variables

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . .

of states St, actions At and rewards Rt a trajectory, with support of S0 in S0. For all
trajectories generated by the MDP, we require

f(s′, r|St−1 = s,At−1 = a′) = f(s′, r|Si = si, Ai = ai, i ∈ I),

for all s, si ∈ S, ai ∈ A, I ⊆ {0, . . . , t− 1}, t− 1 ∈ I, where f is the (conditional) CDF
of the state-reward distribution, i.e. the probability of transitioning from a state-action
pair to the next state-reward pair may only depend on the last time step, not the whole
history of steps. We call this the Markov Property of the MDP. Note that p would not
be well-defined if the Markov Property were not satisfied.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Figure 1.1: The Agent-Environment Interaction. [Sutton and Barto, 2018] [Sutton, 2023]

Definition 1.2 (Episodes). Let (S,A,S0, p, γ) be an MDP. If there exists a set S† ⊆ S,
such that all trajectories of the MDP are finite and end in a state s ∈ S† and no states
of S† occur before the end of a trajectory, we call the MDP episodic (or say the MDP
represents an episodic task) and call S† the terminal states.

In the real world, many applications are not episodic, e.g. many control tasks can
theoretically go on forever, like a car that never crashes. We call these types of tasks
continuing. For most of the algorithms and ideas presented here, the notion of episodes
is not crucially important, but still a helpful concept.

1.1.2 Return, Value- and q-Function

We now have the terminology to talk about the goal of Reinforcement Learning more
formally:

4

1.1. Basic Definitions

Definition 1.3 (Return). Given a trajectory S0, A0, R1, S1, A1, . . . of an MDP
(S,A,S0, p, γ), we call the random variable

Gt =
∞∑

i=0
γiRt+i+1

the return. Since the reward is required to be bounded, Gt is also bounded if γ < 1. For
episodic tasks, this sum is always finite and thus also exists for γ = 1.

Definition 1.4 (Policy). A function π, that maps a state s ∈ S to a probability
distribution over A is called a policy.

Definition 1.5 (q- and Value-Function). Let (S,A,S0, p, γ) be an MDP, π a policy. The
function

vπ : S → R; s 7→ EAt∼π,St,Rt+1∼p

[
Gt

∣∣St = s
]

is called the value function of state s under policy π. The function

qπ : S ×A → R; (s, a) 7→ EAt∼π,St,Rt+1∼p

[
Gt

∣∣St = s,At = a
]

is called the action-value function (or simply q-function) of state action pair (s, a) under
policy π.

Using these notions we can now define what it means to solve a Reinforcement Learning
problem:

Definition 1.6 (Optimal Policy). Let Π be the set of all policies of an MDP. If for some
π∗ ∈ Π the condition

∀π ∈ Π: ∀s ∈ S : vπ∗(s) ≥ vπ(s)

holds, we call π∗ an optimal policy or solution of the MDP.

Instead of the value function, we could have also used the q-function in the definition:

Theorem 1.7. π∗ ∈ Π is optimal iff

∀π ∈ Π: ∀(s, a) ∈ S ×A : qπ∗(s, a) ≥ qπ(s, a),

Proof. The statement follows immediately from

vπ(s) = EA∼π[qπ(s,A)] (1.1)

and
qπ(s, a) = E[Rt+1 + γvπ(St+1)|St = s,At = a]. (1.2)

5

1. Reinforcement Learning Concepts

By plugging π∗ into equation (1.1), we see that

vπ∗(s) = EA∼π∗ [qπ(s,A)]
= max

a∈A
qπ(s,A),

because otherwise π∗ could be modified to always choose such a maximal action, which
would increase vπ∗ (see the proof of Theorem 1.9). Combining this with (1.2), we get:

Theorem 1.8 (Bellman Equation). An optimal policy π∗ satisfies

vπ∗(s) = max
a∈A

E[Rt+1 + γvπ∗(St+1)|St = s,At = a]

and
qπ∗(s, a) = E[Rt+1 + γmax

a′∈A
qπ∗(St+1, a

′)|St = s,At = a]. (1.3)

This equation will become very useful in the following chapters as it allows us to
reformulate the search for the q- and value-function of the optimal policy as a fixed point
problem. From there we can construct a (deterministic) policy as

πq(s) := arg max
a∈A

q(s, a). (1.4)

There still is the question of whether an optimal policy always exists. In the generality of
our MDP definition, the answer is no (consider an MDP with just one state, action space
[0, 1) and deterministic reward r(a) = a), but the following important special case holds:

Theorem 1.9. Let (S,A,S0, p, γ), γ < 1 be a finite MDP (states, actions and possible
rewards are finite), then an optimal deterministic policy exists.

Proof. Let π1, π2 be two deterministic policies. Define π by

π(s) =
{
π1(s), if vπ1(s) ≥ vπ2(s),
π2(s), otherwise.

Then we have

vπ1(s) ≤ qπ1(s, π(s))
= Eπ [Rt+1 + γvπ1(St+1)|St = s]
≤ E [Rt+1 + γqπ1(St+1, π(St+1))|St = s]

= Eπ

[
Rt+1 + γRt+2 + γ2vπ1(St+2)|St = s

]
,

so by induction

vπ1(s) ≤ Eπ

[
N∑

n=1
γn−1Rt+n + γNvπ1(St+N+1)|St = s

]
∀N ∈ N.

6

1.2. Temporal Difference Learning

Since the reward is bounded and γ < 1, we have γNvπ1(St+N+1)→ 0, so the right side
converges to vπ(s), proving vπ1(s) ≤ vπ(s).

For any two uncomparable (by their value functions) policies, there exists an upper bound
policy. Since for any finite MDP, there are only finitely many deterministic policies, we
arrive at a maximum in finite steps by repeatedly applying this maximization operation
to pairs of policies.

By using the same arguments as above, we can show that for any stochastic policy πstoch,
the (deterministic) policy defined by

π(s) := arg max
a∈A

qπstoch(s, a)

fulfills vπstoch ≤ vπ, so the maximal deterministic policy is the optimal policy we were
looking for.

1.2 Temporal Difference Learning
We already know how to construct a policy when given an optimal q function, so let us
look at how to approximate this q-function: From the definition

qπ(s, a) = EAt∼π,St,Rt+1∼p

[
Gt

∣∣St = s,At = a
]
,

we could just generate trajectories, for each (s, a) calculate the respective returns Gn

starting in state s with action a and then approximate the q function by

qn(s, a) = 1
n

n∑
k=1

Gk

= 1
n

n−1∑
k=1

Gk + 1
n
Gn

= n− 1
n

1
n− 1

n−1∑
k=1

Gk +Gn

= 1
n− 1

n−1∑
k=1

Gk + 1
n

(
Gn −

1
n− 1

n−1∑
k=1

Gk

)

= qn−1(s, a) + 1
n

(Gn − qn−1(s, a)) ,

giving us an incremental update rule. This is called a Monte-Carlo update. While
yielding an interesting class of algorithms, it has two main disadvantages:

1. we have to keep track of the number of updates for each state-action pair and

2. we still have to generate the whole episode to calculate the return.

7

1. Reinforcement Learning Concepts

The first disadvantage is resolved by replacing the update rule by

q(s, a)← q(s, a) + α (G− q(s, a))

for some α called the learning rate. (We would still call this a Monte-Carlo update!)

The second disadvantage is solved by replacing G by the estimate Rt+1 + γq(St+1, A) for
A sampled from π to obtain

q(s, a)← q(s, a) + α (Rt+1 + γq(St+1, A)− q(s, a)) . (1.5)

This replacement of G by an estimate from the reward and the current approximation of
the q function is called a temporal difference learning update, with this specific approach
of using the sampled action in the update rule called a SARSA update (because we need
the current state and action, the reward we got and the next state and sampled action).

We could combine this update rule with (1.4) and expect it to learn an optimal policy
over time. Unfortunately, this will not be the case in the vast majority of running this
algorithm, as we are currently missing one crucial component of Reinforcement Learning:
exploration!

Consider the following scenario depicted in Figure 1.2: An agent (the blue dot) placed in
a one-dimensional grid world. Its actions are moving left and right, the left-most and
right-most cells being terminal, and moving onto the left-most cell gives a reward of 1,
moving onto the rightmost cell gives a reward of 2, and all other actions give a reward of
0. For simplicity let γ = 1. Looking at the policy that always moves left, the algorithm
described above will never update and be stuck in a suboptimal policy, as it never sees
the better option of moving right.

Figure 1.2: An example of a 1d grid world.

We call this the exploration vs. exploitation problem. A Reinforcement Learning algorithm
has to explore so as not to get stuck in suboptimal policies, but if it explores too much, it
will not use the knowledge gained, never generating good rewards. So a good algorithm
has to strike a balance between gaining new knowledge by exploring vs. exploiting the
gained knowledge to get good rewards.

We will return to different solutions to this problem multiple times in this thesis, but for
now, we can solve it by replacing (1.4) by

πε
q(s) :=

{
arg maxa∈A q(s, a) with probability 1− ε,
a random a ∈ A with probability ε

8

1.2. Temporal Difference Learning

for some 0 ≤ ε ≤ 1. We call πε
q an ε-greedy policy. This yields Algorithm 1.1, which we

call SARSA.

Initialize: q(s, a) for all states/actions, q(st, a) = 0 for all terminal st

1 foreach episode do
2 Sample start state s;
3 Choose a according to πε

q ;
4 while s not terminal do
5 Take action a, observe reward r, next state s′;
6 Choose a′ according to πε

q ;
7 q(s, a)← q(s, a) + α (r + γq(s′, a′)− q(s, a));
8 s← s′;
9 a← a′;

10 end
11 end

Algorithm 1.1: The SARSA algorithm. [Sutton and Barto, 2018]

A very important variation of this algorithm is Q-Learning, shown in Algorithm 1.2. The
difference between the two is that the q-value used in the update rule does not originate
from the action sampled by the ε-greedy policy, but rather from the action retrieved
from (1.4). Therefore, the approximated q-function is not that of the policy used to
generate the trajectories, but rather of the corresponding deterministic policy. Thus,
we call Q-Learning an off-policy algorithm, while SARSA is called on-policy. Off-policy
algorithms have the advantage of being easily extendable to using experience replay,
which we will return to when discussing the use of artificial neural nets in Reinforcement
Learning.

Initialize: q(s, a) for all states/actions, q(st, a) = 0 for all terminal st

1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to πε

q ;
5 Take action a, observe reward r, next state s′;
6 q(s, a)← q(s, a) + α (r + γmaxa′∈A q(s′, a′)− q(s, a));
7 s← s′;
8 end
9 end

Algorithm 1.2: The algorithm Q-Learning. [Sutton and Barto, 2018]

9

1. Reinforcement Learning Concepts

1.3 Policy Gradient Methods

Another rich class of Reinforcement Learning algorithms are the so-called Policy Gradient
Methods. Here, instead of using (1.4) for the definition of an ε-greedy policy, we directly
obtain a stochastic policy from the q-function that is in some way proportional to the
q-values for each action. For simplicity let γ = 1 in this section except in the final
algorithm pseudocode.

To do this, we need some
π : S × Rd → D(A),

where D(A) are all distributions over A. We can interpret this π as a function that yields
a policy for any θ ∈ Rd. We therefore also write πθ for π(·, θ).

Our goal is to maximize the return, i.e. maximize

J(θ) = vπθ
(s).

If J is differentiable, we can use gradient ascent,

θ ← θ + α∇J(θ),

to improve our policy. While this gradient may seem unfeasible in practice, the following
theorem greatly simplifies its calculation:

Theorem 1.10 (Policy Gradient Theorem). Let S be a discrete space, b : S → R an
arbitrary function (called baseline). Let the image of π contain only discrete distributions,
p(s, a, θ) the PMF of π(s, θ), then

∇J(θ) ∝
∑
s∈S

µ(s)
∑
a∈A

(qπθ
(s, a)− b(s))∇p(s, a, θ),

where µ is the PMF of the occurrences of the states under the policy πτ . Similarly, if the
image of π contains only distributions that have a PDF (denoted by f(s, a, θ)),

∇J(θ) ∝
∑
s∈S

µ(s)
∫

A
(qπθ

(s, a)− b(s))∇f(s, a, θ) da,

holds. If S is a subspace of Rn, the sums over S can be replaced by integrals.

Proof. The proof of the theorem with b ≡ 0 is a straightforward but somewhat lengthy
calculation, so the reader is referred to Section 13.2 of [Sutton and Barto, 2018]. For

10

1.3. Policy Gradient Methods

b ̸= 0 note

∇J = ∇vπ(s) = ∇
[∑

a∈A
π(s, a)qπ(s, a)

]

= ∇
[∑

a∈A
π(s, a)qπ(s, a)− b(s)

]

= ∇
[∑

a∈A
π(s, a)qπ(s, a)− b(s)

∑
a∈A

π(s, a)
]

= ∇
[∑

a∈A
π(s, a)(qπ(s, a)− b(s))

]

and similarly for continuous distributions.

Note that by multiplying with p(s,a,θ)
p(s,a,θ) (or f(s,a,θ)

f(s,a,θ) in the continuous case) we can reformulate
the gradient as

∇J(θ) ∝ Eπθ
[(G− b(s))∇ log p(s, a, θ)]

with return G. This gives us an easily implementable update rule by estimating this
expected value. We see that the gradient is small if the baseline is close to the expected
return. This gives rise to the idea of simultaneously approximating vπ and using it as
the baseline. The resulting algorithm is called Actor-Critic (because the value function
is used as a critic to “evaluate” how good the actor, i.e. the policy is) and is depicted
in Algorithm 1.3, where the TD error (1.5) is used to obtain the gradient for the value
function.

Initialize: π(s, a, θ): a differentiable policy parametrization
Initialize: v(s, τ): a differentiable state-value function parametrization,

v(st, τ) = 0 for terminal states
1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Let n be the current step number;
5 Choose a according to πθ;
6 Take action a, observe reward r, next state s′;
7 δ ← R+ γv(s′, τ)− v(s, τ);
8 τ ← τ + αδ∇v(s, τ);
9 θ ← θ + αγnδ∇ log π(s, a, θ);

10 s← s′;
11 end
12 end

Algorithm 1.3: The algorithm Actor-Critic, π is identified with its PMF/PDF.
[Sutton and Barto, 2018]

11

1. Reinforcement Learning Concepts

To conclude this section, let us look at two important examples of how to choose such a
π in practice:

• Let A = {a1, . . . , an} be a discrete space. Choose any differentiable

h(s, a, θ) : S ×A×Rd → R,

e.g. a neural net with input S × A or just a linear function θ · x(s, a) for some
feature extraction x : S ×A → Rd. Then

π(s, a, θ) := eh(s,a,θ)∑n
i=1 e

h(s,ai,θ)

defines a PMF.

• Let A = R. Let h : S ×Rd → R×R+; (s, θ) 7→ (µθ(s), σθ(s)) be any differentiable
function, then

π : S × Rd → D(A); (s, θ) 7→ N (µθ(s), σθ(s)),

where N (µ, σ) denotes a normal distribution with mean µ and standard deviation
σ. This can be extended in a straightforward manner to A = Rd using diagonal
normal distributions, i.e. normal distributions in each dimension of A.

1.4 Deep Reinforcement Learning

So far we have mentioned the usage of artificial neural nets as the policy and as the
value function in Actor-Critic. These share the problems described in this section, and
we will get back to them in Chapter 3, but for now, we will focus on the extension of
Q-Learning (see Algorithm 1.2) to Deep Learning techniques. This section is based on
[Mnih et al., 2015].

If we just replaced q in Algorithm 1.2 by a neural net parametrized by θ and use (1.5)
for gradient descent as we did in Actor-Critic (Algorithm 1.3), we would see it diverging
miserably when applied to more complex environments. The major reasons for this are:

1. Typically consecutive states and actions in an episode are highly correlated, leading
to biases when applying gradient descent updates to the networks in the order the
experiences occurred.

2. Even small updates to the q-network can change the policy at a given state by the
definition of πε

q . Coupled with the fact that every update changes the q-function
globally, not just in the state the update originated from, this may lead to very
unstable policies changing greatly with updates.

12

1.4. Deep Reinforcement Learning

3. The update for q(s, a) uses the target value r + γq(s′, a′), making these two highly
correlated. Since the update for q(s, a) also changes q(s′, a′) this may lead to
divergence of the network.

To address these issues we use the following two techniques:

• Experience decorrelation with uniform sampling from a buffer: Instead of updating
the network in each step using the current experience as we did in Algorithm 1.2,
we store all trajectories the agent has experienced (or at least a lot of them) in a
replay buffer, and update by uniformly sampling a certain number of experiences (a
minibatch) from the buffer and calculating the gradient of the mean error obtained
from them. This reduces problem 1 greatly.

• Introduction of a target network to stabilize updates: Use two sets of parameters,
θ− and θ, where θ− determines the policy and τ is updated according to the error(

r + γmax
a′∈A

q(s′, a′, θ−)− q(s, a, θ)
)2
,

and every C ∈ N steps θ− is set to θ. This introduces a kind of inertia to the policy
and the updates, keeping the q-values stable for some time. This greatly mitigates
problems 2 and 3.

The resulting algorithm is called Deep Q-Learning (or DQN for short) and is depicted
in Algorithm 1.4. Note that gradient descent is replaced by the Adam optimizer,
see [Kingma and Ba, 2014]. In the original paper, RMSProp, [Geoffrey Hinton, 2012],
was used, which Adam usually outperforms, so for the sake of comparability all Deep
Reinforcement Learning algorithms described in this thesis will use Adam.

13

1. Reinforcement Learning Concepts

Initialize: Minibatchsize n, inertia C
Initialize: θ−, θ: parameters of the neural net q
Initialize: Buffer B of fixed size

1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to πε

θ− ;
5 Take action a, observe reward r, next state s′, store (s, a, r, s′) in B;
6 Sample minibatch M of size n from B;
7 L← 1

n

∑n
i=1 (ri + γmaxa′∈A q(s′

i, a
′, θ−)− q(si, ai, θ))2;

8 Update θ by using Adam, minimizing L;
9 s← s′;

10 if C steps taken then
11 θ− ← θ;
12 end
13 end
14 end

Algorithm 1.4: The algorithm DQN.

14

CHAPTER 2
Distributional Q-Value

Approximation

So far we looked at the state- and action-value functions,

vπ(s) = Eπ

[∞∑
t=0

γtRt+1|S0 = s

]
,

qπ(s, a) = Eπ

[∞∑
t=0

γtRt+1|S0 = s,A0 = a

]

and how to approximate an optimal policy from them. In this chapter, we will have a
closer look at the random variable

Zπ(s, a) :=
∞∑

t=0
γtRt+1,

its distribution, and different ways to approximate it.

We will start with a bit of historical context in looking at C51, the first algorithm to
utilize distributional q-value approximation. Then we will have a more in-depth look at
QRDQN, the first algorithm with a theoretically sound basis in the category. Lastly, we
will extend the idea of QRDQN to IQN. The basis for all these algorithms will be DQN,
described in Section 1.4.

In the interest of uniform notation, this whole chapter will use the notation of
[Dabney et al., 2018b]. Also, we always assume an MDP (S,A,S0, p, γ) with a dis-
crete action space in this chapter.

15

2. Distributional RL

2.1 Categorical DQN
In [Bellemare et al., 2017], the authors first explore the idea of distributional approxima-
tion of the return-value distribution, developing a theoretical framework around it. They
use a categorical distribution with 51 atoms as their representation, hence the name
Categorical DQN or C51, which performs very well in practice, but does not completely
fit the theory yet. In this section, we will explore this theory and give a sketch of the
algorithm, so all the results are taken from [Bellemare et al., 2017].

2.1.1 The Distributional Bellman Operator

First, note that
Z(s, a) D= R(s, a) + γP πZ(s, a),

where R(s, a) is the random variable describing the reward gained in state s taking action
a, D= means equality in distribution and P π is defined as

P πZ(s, a) D= Z(s′, a′)
s′ ∼ p(s, a), a′ ∼ π(s).

We denote the space of all such Z by Z. Now using the Bellman equation (1.3),

E
[
Zπ∗(s, a)

]
= qπ∗(s, a)

= E[Rt+1 + γmax
a′∈A

qπ∗(St+1, a
′)|St = s,At = a]

= E[R(s, a)] + γmax
a′∈A

Es′∼p[Zπ∗(s′, a′)|St = s,At = a].

We see that not only the q function of the optimal policy but also the underlying
distribution satisfies the equation

Zπ∗(s, a) D= R(s, a) + γmax
a′∈A

Zπ∗(s′, a′).

We denote the set of all Z representing the return value distribution of an optimal policy
by Z∗.

From this, we can define:

Definition 2.1. The Distributional Bellman Operator is defined as

T πZ(s, a) D:= R(s, a) + γP πZ(s, a),

where, again, D:= means that the random variable on the left is any random variable
sharing the distribution with the right side.

Similar to the non-distributional Bellman equation, the distribution Z of the return when
following π is given by a fixed point of T π, so using it will enable us to perform policy
evaluation. For analysis of the control setting, we will use the following operator:

16

2.1. Categorical DQN

Definition 2.2. Let GZ be the set of greedy policies regarding Z, i.e. all policies maxi-
mizing the expected value:

GZ := {π ∈ Π :
∑
a∈A

π(s, a)E [Z(s, a)] = max
a′∈A

E
[
Z(s, a′)

]
}.

Then the Distributional Bellman Optimality Operator is defined as any T satisfying

T Z D= T πZ for some π ∈ GZ ,

i.e. T realizes a policy evaluation step using some greedy policy regarding the current Z.

2.1.2 The Wasserstein Metric

In the next section, we want to check whether or not the operators T and T π satisfy the
Banach fixed-point theorem. We, therefore, need a metric on distributions:

Definition 2.3. For random variables U, Y with respective CDFs FY , FU , we define the
p-Wasserstein distance (or p-Wasserstein metric) as

Wp(U, Y) =
(∫ 1

0
|F−1

Y (ω)− F−1
U (ω)|p dω

) 1
p

.

For p =∞ we set
W∞(U, Y) = sup

ω∈[0,1]
|F−1

Y (ω)− F−1
U (ω)|.

That the Wasserstein distance is a metric follows directly from the fact that it is the Lp

metric on the inverse CDFs of the random variables, positivity follows from the fact that
CDFs are right-continuous.

Having a notion of distances between distributions, we can extend this idea to define a
metric over value distributions Z(s, a), enabling convergence analysis of the operators
T π and T :

Definition 2.4. Let Z1, Z2 ∈ Z be two value distributions, then we define

d̄p(Z1, Z2) := sup
s∈S, a∈A

Wp(Z1(s, a), Z2(s, a)).

2.1.3 Convergence Analysis

The first result concerns policy evaluation:

Theorem 2.5. The operator T π is a γ-contraction in d̄p.

17

2. Distributional RL

Proof. Let Z1, Z2 ∈ Z be two value distributions. Then

d̄p(T πZ1, T πZ2) = sup
s,a

dp(T πZ1(s, a), T πZ2(s, a))

= sup
s,a

dp(R(s, a) + γP πZ1(s, a), R(s, a) + γP πZ2(s, a))

(∗)
≤ γ sup

s,a
dp(P πZ1(s, a), P πZ2(s, a))

≤ γ sup
s′,a′

dp(Z1(s′, a′), Z2(s′, a′))

= d̄p(Z1(s′, a′), Z2(s′, a′)),

where (∗) holds because

dp(A+ γU,A+ γV) ≤ γdp(U, V)

for independent random variables A,U, V .

So T π has a unique fixed point and iteration of T π on any Z ∈ Z converges to this fixed
point. By definition of T π, this fixed point represents for each state-action pair (s, a) a
distribution with expected value qπ(s, a).

Unfortunately, the same is not true for the optimality operator:

Theorem 2.6. The operator T is not a contraction.

But still, the following result holds:

Theorem 2.7. Denote by Z∗∗ the set of value distributions that correspond to a sequence
of optimal policies. Let Zk = T Zk−1 with Z0 ∈ Z. Then

lim
k→∞

inf
Z∗∗∈Z∗∗(s,a)

dp(Zk(s, a), Z∗∗(s, a)) = 0 ∀s ∈ S, ∀a ∈ A.

If S is finite, then Zk converges to Z∗∗ uniformly.

Furthermore, if there is a total ordering ≺ on the set of optimal policies Π∗, such that
for any Z∗ ∈ Z∗

T Z∗ = T πZ∗ with π ∈ GZ∗ , π ≺ π′∀π′ ∈ GZ∗ \ {π},

then T has a unique fixed point Z∗ ∈ Z∗.

We see that the control setting is much less well-behaved than the policy evaluation
setting, not even guaranteeing a fixed point.

18

2.2. Quantile Regression DQN

2.1.4 The Algorithm C51

Since this section’s purpose is to motivate ideas of Distributional Reinforcement Learning
and to give historical context, we will just sketch the algorithm based on the above
idea, for the full details see the original paper [Bellemare et al., 2017]. First, choose
Vmin, Vmax ∈ R and N ∈ N. By ∆z := (Vmax − Vmin)/(N − 1) we get the atoms

zi := Vmin + i∆z, 0 ≤ i < N.

Next choose some parametric model h : S ×A× Rd → RN , then we can define Zh by

Zθ(s, a) = zi with probability pi(s, a) := ehi(s,a,θ)∑N
j=1 e

h(s,a,θ)
,

so we model our distribution by using a discrete PMF (compare also the example in
Section 1.3).
Since the support of T Zθ and Zθ will almost always be mostly disjoint, see Figure 2.1, we
will project the support of T Zθ onto the support of Zθ. Denote this projection by ΦT Zθ.
By the theory we looked at so far, we would now want to minimize some Wasserstein
distance. But in this setting, the Wasserstein distance cannot be used as a loss from
samples, as the gradient obtained from sample trajectories will in general differ from
the gradient of the underlying distribution. So for now, we will use the Kullback-Leibler
divergence,

DKL
(
ΦT Zθ̃(s, a)

∥∥ Zθ(s, a)
)

as the loss function, where θ̃ means we view θ as fixed, not contributing to the gradient.
The Kullback-Leibler divergence is defined as

DKL(P ∥ Q) := Ex∼P

[
log p(x)

q(x)

]
,

where p, q are the densities of P,Q respectively. This creates a theory-practice gap, which
we will set out to solve in the next section.

2.2 Quantile Regression DQN
Unsatisfied with the theory-practice gap of C51, the authors of [Dabney et al., 2018b]
set out to create an algorithm that actually minimizes the Wasserstein distance. They
do so by finding a clever representation of the distributions involved and by borrowing
techniques from economics, both of which we will explore in this section. Again, if not
otherwise stated, all results are from [Dabney et al., 2018b].

2.2.1 The Quantile Approximation

Instead of approximating the density function of the distribution, we will approximate
the distribution function, or more precisely its inverse F−1, the quantile function.
This has three main advantages:

19

2. Distributional RL

�P⇡ZR+

P⇡Z�ZP⇡

(a) (b)

(c) (d)

T ⇡Z�

Figure 2.1: Visualization of a distributional Bellman operator with a deterministic
reward function on a discrete distribution: (a) Next state distribution under policy π,
(b) Discounting shrinks the distribution towards 0, (c) The reward shifts it, and (d)
Projection step, taken from [Bellemare et al., 2017]

1. We do not have to know the support of the distribution of the return beforehand,
as F−1 is always defined on (0, 1), therefore eliminating the hyperparameters
Vmin, Vmax.

2. As there is no issue with disjoint supports anymore, we do not need the projection
step of C51.

3. We can now actually minimize the Wasserstein distance without problems with
biased gradients when approximating using sample trajectories using quantile
regression. We will discuss this in more detail in the next subsection.

Formally, we choose N ∈ N to get

τi = i

N
, i = 0, . . . , N

Our approximation of F−1 is a step function that is constant between τi and τi+1,
i = 0, . . . N − 1. Denote by ZQ all distributions with such a quantile function.

The first question concerns how to best approximate any given distribution in ZQ. As we
previously established, the Wasserstein distances yield a good notion for approximation
distributions, so the question is solved by determining an explicit form of the projection
onto ZQ,

ΠW1Z := arg min
Zθ∈ZQ

W1(Z,Zθ).

Since Zθ ∈ ZQ are piecewise constant, the answer is given by the following lemma:

Lemma 2.8. For any τ, τ ′ ∈ [0, 1] with τ < τ ′ and CDF F with inverse F−1, any θ with

F (θ) = τ + τ ′

2

20

2.2. Quantile Regression DQN

minimizes ∫ τ ′

τ
|F−1(ω)− θ| dω.

Therefore F−1
(

τ+τ ′

2

)
is a valid minimizer, and if F−1 is continuous at τ+τ ′

2 , it is the
unique minimizer.

Defining the quantile midpoints as

τ̂i := τi−1 + τi

2 , i = 1, . . . , N

the projection of ΠW1Z is given by the values

F−1
ΠW1 Z = θi := F−1

Z (τ̂i), i = 1, . . . , N,

where F−1
Z denotes the quantile function of Z. The projection is visualized in Figure 2.2.

We also denote by F−1
θ any quantile function defined that way from a vector θ ∈ RN .

Space of Returns

Pr
ob

ab
ili

ty
 S

pa
ce

⌧1

⌧2

⌧3

⌧4 = 1

⌧0 = 0

⌧̂1

⌧̂2

⌧̂3

⌧̂4

q1

q2

q3

q4
Z 2 Z
⇧W1

Z 2 ZQ

z1 = F�1
Z (⌧̂1) z2 z3 z4

Figure 2.2: Visualization of the projection ΠW1Z with N = 4. The red regions show the
1-Wasserstein distance. Figure taken from [Dabney et al., 2018b]

We end the subsection with the result, that projecting in policy evaluation still attains a
fixed point:

Theorem 2.9. Let S,A be countable, then

d̄∞ (ΠW1T πZ1,ΠW1T πZ2) ≤ γd̄p(Z1, Z2)

for any Z1, Z2 ∈ Z.

21

2. Distributional RL

2.2.2 Quantile Huber Loss

Above we mentioned that one advantage of the quantile representation is that we can
directly minimize the Wasserstein distance by using gradients from sampled experience.
Unfortunately, this is not true directly, but there is a method for unbiased stochastic
approximation of the quantile function, called quantile regression, which is a technique
used in economics:

Definition 2.10. We call

LT
QR(θ) := EẐ∼Z [ρτ (Ẑ − θ)]

with
ρτ : R→ R; u 7→ u(τ − δu<0)

the quantile regression loss.

This loss attains a minimum at the value F−1
Z (τ) for a given distribution Z and quantile

τ . However it is not smooth at zero, so we modify it using the Huber loss, [Huber, 1964],

Lκ(u) =
{1

2u
2, if |u| ≤ κ,

κ(|u| − 1
2κ), otherwise,

to better suit our needs, giving:

Definition 2.11. We call
ρκ

τ (u) = |τ − δu<0|Lκ(u)

the quantile Huber loss. Furthermore, we use ρ0
τ := ρτ .

So in summary, we can find the θ ∈ RN minimizing Wasserstein distance by minimizing
the loss

N∑
i=1

EẐ∼Z [ρκ
τi

(Ẑ − θi)]

which gives us unbiased sample gradients, enabling the usage of stochastic gradient
descent.

2.2.3 The Full Algorithm

Now we can describe the algorithm based on distributional policy improvement using
quantile representations:

1. Use a neural net
θ : S ×A → RN

to represent the quantile functions Zθ ∈ ZQ. In practice for discrete action spaces,
it is usually more efficient to use θ : S → R|A| × RN .

22

2.2. Quantile Regression DQN

2. Use πε
q based on

q(s, a) = E [Zθ(s, a)] = 1
N

N∑
i=1

θ(s, a)i

to generate trajectories, and store these experiences in a buffer.

3. To update θ, sample experiences uniformly from the buffer to calculate

L =
N∑

i=1
EẐ∼Z [ρκ

τi
(T Z − θi)] ≈

1
N

N∑
j=1

N∑
i=1

ρκ
τ̂i

(T θj − θi),

where

T θj = r + γθj(s′, a∗),
a∗ = arg max

a∈A
q(s′, a),

and run an Adam optimization step on L. Note that T θj is implicitly treated as a
constant when calculating ∇L, similarly to the temporal difference error we used
in DQN.

Pseudocode is provided in Algorithm 2.1.

Initialize: Minibatchsize n, inertia C
Initialize: ξ−, ξ: parameters of the neural net θ : S ×A → RN

Initialize: Function q(s, a, ξ) = 1
N

∑N
i=1 θ(s, a, ξ)i

Initialize: Buffer B of fixed size
1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to πε

q(·,·,ξ−);
5 Take action a, observe reward r, next state s′, store (s, a, r, s′) in B;
6 Sample minibatch M of size n from B;
7 Sample actions a∗ ← arg maxa∈A q(s′, a, ξ−) for each s′ in M ;
8 T θj(r, s′)← r + γθj(s′, a∗, ξ−);
9 L(s, a, r, s′)← 1

N

∑N
j=1

∑N
i=1 ρ

κ
τ̂i

(T θj(r, s′)− θi(s, a, ξ));
10 Update ξ by using Adam, minimizing the mean of L;
11 s← s′;
12 if C steps taken then
13 ξ− ← ξ;
14 end
15 end
16 end

Algorithm 2.1: The algorithm QRDQN.

23

2. Distributional RL

2.3 Implicit Quantile Networks

This section is based on [Dabney et al., 2018a].

In QRDQN, the quantile function F−1
Z is parametrized as a step function, meaning that

the error of our approximation is largely dependent on the hyperparameter N . We now
aim to learn the full quantile function.

For notational simplicity, write Zτ := F−1
Z (τ). We can now view Zτ as a random variable

given τ ∼ U([0, 1]), leading to Zτ (s, a) ∼ Z(s, a). We can therefore view Zτ as samples
from the (implicitly defined) return distribution, giving rise to the name “Implicit Quantile
Network” when approximating Zτ by an artificial neural net.

This perception of Zτ as a sample from the return distribution allows us to deduce

q(s, a) = E[Z(s, a)] = Eτ∼U([0,1])[Zτ (s, a)] ≈ 1
K

K∑
k=1

Zτk
(s, a)

for τk ∼ U([0, 1]), k = 1, . . . ,K. From this, we can define πε
q as usual.

So, lastly, we have a look at how to optimize: Given an experience (s, a, r, s′) we define a
temporal difference error similar to the one used in QRDQN,

δτ,τ ′(s, a, r, s′) = r + γZτ ′(s′, πq(s′))− Zτ (s, a).

Note, as usual, that Zτ ′(s′, πq(s′)) is treated as a constant when differentiating.

This gives us, again similar to QRDQN, the IQN loss function

L(s, a, r, s′) = 1
N ′

N∑
i=1

N ′∑
j=1

ρκ
τi

(δτi,τ
′
j

t (s, a, r, s′))

for τi, τ
′
j ∼ U([0, 1]) for i = 1, . . . , N, j = 1, . . . N ′, where N,N ′ ∈ N are hyperparameters.

The full algorithm is provided in Algorithm 2.2.

2.3.1 A Note on Risk Sensitive RL

So far in this whole chapter, we have only talked about distributional q-value approxi-
mation as a means to faster or better convergence. But it also enables us, especially in
the case of IQN, to transform the distribution when selecting an action. We could, for
example, give more weight to low values of return, therefore giving bad experiences more
weight, which would likely lead the agent to avoid actions that lead to high negative
rewards, however unlikely they may be, therefore making it risk-averse. Similarly, we
could put more weight on high values of return, making the agent shift its actions more
towards high returns, ignoring possible low returns, therefore making it risk-seeking.

24

2.3. Implicit Quantile Networks

Initialize: Minibatchsize n, inertia C
Initialize: ξ−, ξ: parameters of the neural net θ : S ×A× R→ R
Initialize: (Stochastic) Function q(s, a, ξ) = 1

K

∑K
k=1 θ(s, a, τ, ξ) for

τi ∼ U([0, 1])
Initialize: Buffer B of fixed size

1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to πε

q(·,·,ξ−);
5 Take action a, observe reward r, next state s′, store (s, a, r, s′) in B;
6 Sample minibatch M of size n from B;
7 Sample actions a∗ ← arg maxa∈A q(s′, a, ξ−) for each s′ in M ;
8 Sample τi, τ

′
j ∼ U([0, 1]), i = 1, . . . , N , j = 1, . . . , N ′;

9 δτi,τ
′
j (s, a, r, s′)← r + γθ(s′, a∗, τ ′

j , ξ
−)− θ(s, a, τi, ξ);

10 L(s, a, r, s′)← 1
N

∑N
j=1

∑N
i=1 ρ

κ
τi

(δτi,τ
′
j (s, a, r, s′));

11 Update ξ by using Adam, minimizing the mean of L;
12 s← s′;
13 if C steps taken then
14 ξ− ← ξ;
15 end
16 end
17 end

Algorithm 2.2: The algorithm IQN.

Formally, this is done by choosing a monotonous, bijective β : [0, 1] → [0, 1]. We then
change our definition of the q-function to

qβ(s, a) = Eτ∼U([0,1])[Zβ(τ)(s, a)] ≈ 1
K

K∑
k=1

Zβ(τk)(s, a),

where τk ∼ U([0, 1]), k = 1, . . . ,K. A convex β would make the agent act risk-seeking,
whereas a concave β would make it risk-averse.

25

CHAPTER 3
Soft Actor-Critic

Algorithms based on Q-Learning have a quite simple approach to exploration, namely
a uniform one. Imagine you want to use Reinforcement Learning to train a robot to
complete some kind of obstacle course. To succeed, it has to overcome the obstacles in
succession, i.e. it has to be able to overcome the first obstacle before it even sees the
second one. Now, the first one may be a bit tricky, requiring the robot to follow a precise
sequence of actions. This requires exploration to be very low to succeed, otherwise, the
robot will still act too randomly. But because of the uniform approach to exploration,
the robot would not be able to explore enough at the second obstacle if it tries to succeed
at the first one.

This is where Actor-Critic methods, which we mentioned in Section 1.3, come into play:
They have a more individual approach to exploration, exploring more in states where
they do not have a lot of experience, and exploiting more in states where they have a lot
of knowledge about the environment. But when implementing an Actor-Critic algorithm,
another weakness becomes apparent: Sometimes they just think to know a lot about
the environment, dropping exploration more or less completely in some states. Then,
after more about the environment has been revealed to them in other states, some other
actions may be better in those states, but they are unable to adapt.

In this chapter, we look at a method to control the level of exploration Actor-Critic
methods exhibit, by using the entropy of the policy, a measure of the randomness of the
policy, as a regulizer.

Results from the first three sections are taken from [Haarnoja et al., 2018b] if not noted
otherwise.

27

3. Soft Actor-Critic

3.1 Maximum Entropy Objective
First, we need to formally define entropy:

Definition 3.1. Let X be a random variable with PMF or PDF p. Then we call

H(X) := −EX [log p]

the entropy of X.

This concept comes from information theory, where entropy can be interpreted as the
expected information to be gained from sampling from X. Uniform distributions have
the highest entropy, and distributions, where all events except one have zero probability,
have the lowest entropy.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

σ=4, H=2.81
σ=1, H=1.42
σ=0.5, H=0.73

Figure 3.1: Densities of different normal distributions with mean 0 and standard deviation
σ, with entropy noted in the legend.

This makes sense in the interpretation of expected information since following a uniform
distribution will yield a lot of information about the underlying system, whereas following
a deterministic distribution will only reveal one of its features. In the context of
Reinforcement Learning, this yields a nice interpretation of H(π(s)) as the expected

28

3.2. Theoretical Analysis

gained information about the environment dynamics when following the policy π in state
s, i.e. H(π(s)) quantifies the exploration characteristics of π.

This leads us to Maximum Entropy Reinforcement Learning, see e.g. [Ziebart, 2010] for
an at-length introduction to the topic. Consider, for some α > 0,

J(π) := EAt∼π,St,Rt+1∼p

[
T∑

t=0
Rt+1 + αH(π(st))

]
.

By our argument above, the term H(π(st)) is a result of the exploration of the agent, while
the reward term results from exploitation of the current knowledge. Thus swapping out
the maximum expected return objective of Reinforcement Learning with this maximum
entropy objective gives us the means to control the balance of exploration vs. exploitation
by setting (the hyperparameter) α.

Because of these ideas we now define

T πq(s, a) := R(s, a) + γEs′∼p

[
v(s′)

]
, (3.1)

v(s) := Ea∼π [q(s, a)− α log π(s, a)] , (3.2)

where we identify π(s, a) with the PMF/PDF of π(s) at action a.

From this we want to define a policy, so let Π̄ be a set of policies, i.e. policies defined by
normal distributions in each state. As we want our policy to explore according to the
current q-function, giving higher probabilities to actions with higher q-values, we want
to get close to a distribution with density exp(qπ(s)). We, therefore, define the policy
improvement operator T as a projection into Π̄,

T π(s) := arg min
π′∈Π̄

DKL

(
π′(st, ·)

∥∥∥∥∥ exp(α−1qπ(st, ·))
Zπ(st)

)
, (3.3)

where Zπ(s) is a normalizing factor, chosen in such a way that exp(α−1qπ(st,·))
Zπ(st) describes a

distribution. This Zπ(s) is generally intractable, but as we will see in Section 3.3, it is
just a constant in the loss resulting from this projection and therefore has gradient zero,
meaning we do not have to explore it further.

3.2 Theoretical Analysis
First, we show that the augmented objective does not change the convergence of policy
evaluation:

Lemma 3.2. Consider a mapping q0 : S×A → R with |A| <∞ and define qk+1 = T πqk.
Then the sequence qk will converge to the soft q-value of π as k →∞.

Proof. As π is fixed in this setting, define

R̄(s, a) := R(s, a)− αEs′∼p[log π(s′, ·)].

29

3. Soft Actor-Critic

As |A| <∞, this augmented reward is still bounded. This makes it possible to rewrite

T πq(s, a) = R̄(s, a) + γE
[
q(s′, a)

]
,

meaning the result then follows from the corresponding policy evaluation result from
classical Reinforcement Learning, see [Sutton and Barto, 2018] Section 4.1.

Lemma 3.3. Let πold ∈ Π̄ and let

πnew = T πold

Then
qπnew(st, at) ≥ qπold(st, at)

for all (st, at) ∈ S ×A with |A| <∞.

Proof. By definition of T ,

πnew(st, ·) = arg min
π′∈Π̄

DKL

(
π′(st, ·)

∥∥∥∥∥ exp(α−1qπ(st, ·))
Zπ(st)

)
= arg min

π′∈Π̄
Eat∼π′

[
log π′(st, at)− α−1qπold(st, at) + logZπold(st)

]
.

Since πold ∈ Π̄, it participates in the minimum, therefore

Eat∼πnew

[
log πnew(st, at)− α−1qπold(st, at) + logZπold(st)

]
≤ Eat∼πold

[
log πold(st, at)− α−1qπold(st, at) + logZπold(st)

]
.

As Zπold does not depend on at, its expected value is the same on both sides, therefore

Eat∼πnew

[
log πnew(st, at)− α−1qπold(st, at)

]
≤ Eat∼πold

[
log πold(st, at)− α−1qπold(st, at)

]
and, by definition of v and after multiplying by α,

Eat∼πnew [qπold(st, at)− α log πnew(st, at)] ≥ vπold(st).

This makes it possible to expand from the definition of q:

qπold(st, at) = R(st, at) + γEst+1∼p [vπold(st+1)]
≤ R(st, at) + γEst+1∼p

[
Eat+1t∼πnew [qπold(st+1, at+1)− α log πnew(st+1, at+1)]

]
,

and from here we can expand qπold(st+1, at+1) again. This series converges, by Lemma
3.2, to qπnew(st, at), proving the statement.

Note that this was possible because the projection regarding the Kullback-Leibler diver-
gence equals the soft policy evaluation term.

30

3.3. Soft Actor-Critic, a Practical Approximation to Soft Policy Iteration

This yields:

Theorem 3.4. Assume |A| <∞. Then repeated application of Lemma 3.2 and Lemma
3.3 starting from any π ∈ Π̄ converges to a policy optimal in Π̄, i.e.

qπ∗(s, a) ≥ qπ(s, a)

for all (s, a) ∈ S ×A and π ∈ Π̄.

Proof. By Lemma 3.3, the sequence of policies generated by this repeated application is
monotonous. Since the q-function is bounded (see proof of Lemma 3.2), this sequence
converges to some π∗. At convergence, the minimum of the Kullback-Leibler divergence
has to be attained, so we can argue similarly to the previous lemma that

qπ∗(s, a) ≥ qπ(s, a)

for all π ∈ Π̄, so π∗ is optimal in Π̄.

3.3 Soft Actor-Critic, a Practical Approximation to Soft
Policy Iteration

To derive a practical approximation to soft policy iteration, we will focus on continuous
action spaces, we restrict ourselves even further to A = Rn. We, therefore, can use a
neural net

π : S × Rd → R× R+; (s, ϕ) 7→ (µ, σ)

and then sample actions from N (π(s, ϕ)), i.e. a normal distribution with mean µ and
standard deviation σ, compare the end of Section 1.3. We will therefore write π(s, a, ϕ)
for the PDF of the normal distribution with parameters π(s, ϕ). Note that we can easily
generalize this approach to box spaces [a1, b1]× · · · × [an, bn] ⊆ Rn by applying tanh and
shifting each dimension accordingly.

Next, we can define neural nets

q(s, a, θ) : S ×A× Rd̃ → R;

and
v(s, ψ) : S × Rd̂ → R

as the approximations to the q- and value function. Given an experience replay buffer
element (s, a, r, s′), definitions (3.1) and (3.2) lead to losses

Lq(θ) = 1
2
(
r + γv(s′, ψ)− q(s, a, θ)

)2
and

Lv(ψ) = 1
2

(
Ea′∼π

[
q(s, a′, θ)− α log π(s, a′, ϕ)

]
− v(s, ψ)

)2

31

3. Soft Actor-Critic

respectively.

To derive the loss for π, we will use (3.3). Here, the problem arises that we cannot
directly differentiate the output of N (π(s, ϕ)), as we have to sample from the normal
distribution, which is not a differentiable operation directly. To still be able to obtain
gradients, we use what is called the reparametrization trick: Instead of sampling a from
N (π(s, ϕ)), we sample ε from N (0, 1) and then calculate

a = σε+ µ =: f(ε, µ, σ),

making a distributed according to N (µ, σ), therefore allowing differentiation of a with
respect to µ and σ, meaning we can also obtain gradients for neural net optimization of
π(s, ϕ). Using this trick and ignoring the factor Zπ(st) like mentioned before, the loss
becomes

Lπ(ϕ) = Eε∼N (0,1) [α log π(s, f(ε, π(s, ϕ)), ϕ)− q(s, f(ε, π(s, ϕ), θ))] .

Before giving pseudocode, we will explore one more aspect of Soft Actor-Critic, tuning
the entropy temperature α.

3.4 Automatic Entropy Temperature Tuning
In practice, tuning α is quite hard. Usually, we want our policy to exhibit a certain
level of exploration throughout training. But leaving α constant will change this level
of exploration over time, since as rewards from the environment get larger, the entropy
component of the soft return dwindles in comparison. This leads to exploration getting
smaller over time. While this is, in principle, not undesirable (as we have noted previously,
too much exploration will lead to poor performance and possibly never experiencing
some states), α does not give us enough control over the reduction in exploration. It
would be much better if we could choose a desired mean entropy H̄ and then tune α
in such a way that Hπ := Es [H(π(s))] is close to H̄. This idea was first presented by
[Haarnoja et al., 2019], where they use constrained optimization to obtain the following
results:

Theorem 3.5. Let π∗(s, a, α) denote the optimal policy given entropy temperature α.
Then the optimal value of α, retaining Hπ ≥ H̄, is given by

α∗ = arg min
α

Ea∼π∗

[
−α log π∗(s, a, α)− αH̄

]
.

Note that Hπ ≥ H̄ is enough to have Hπ close to H̄ in practice, as higher values of α
typically lead to worse performance in the Reinforcement Learning problem itself.

Furthermore, this optimal value of α is infeasible to calculate by gradient descent in
practice, as the gradient of π∗ with respect to α is hard to compute. We will, therefore,
use the surrogate objective

L(α) = Ea∼π∗

[
−α log π(s, a)− αH̄

]
,

32

3.5. Discrete Variant

i.e. we drop the dependence of π on α completely. Note that the gradient is given by

∇L(α) = Ea∼π∗ [− log π(s, a)]− H̄ = Hπ − H̄.

Thus, this optimization enlarges α when the current mean entropy Hπ of the policy is
smaller than the desired one, and reduces it when the mean entropy is too big.

Pseudocode of the algorithm combining all the concepts of the last few sections is given
in Algorithm 3.1. Note that we, again, use the concept of inertia for updating our neural
nets, this time in v, since v is used for the Bellman update term in Lq. Also, we use the
concept of Polyak updates, i.e. we update the parameters exponentially every C steps,
so for τ ∈ (0, 1), which is called the Polyak coefficient,

ψ− = τψ + (1− τ)ψ−.

Furthermore, to reduce overestimation bias, two q-functions can be approximated at the
same time, and the q-value used for the updates is taken as the minimum of the two
approximations.

3.5 Discrete Variant
In the last two sections, we described the algorithm [Haarnoja et al., 2018b] derived from
Soft Policy Iteration, which only works on continuous action spaces, as it uses normal
distributions. We now want to look at a version that works on discrete, finite action
spaces by using the softmax policy we described at the end of Section 1.3. We will be
following [Christodoulou, 2019].

So let A = {a1, . . . , an}, and h(s, a, ϕ) : S × A× Rd → R be a neural net parametrized
by ϕ ∈ Rd. Define

π : S × Rd → R|A|; (s, ϕ) 7→
(

eh(s,ai,ϕ)∑n
j=1 e

h(s,aj ,ϕ)

)
i=1,...,|A|

,

so π(s, ϕ) describes the PMF of the action distribution in state s, with the i-th entry
being the probability of taking action ai.

Now several things are a little easier than in the continuous action case: We can directly
calculate the entropy of the action distribution in each state,

H(π(s, ϕ)) = −π(s, ϕ) · log π(s, ϕ),

making sampling of the entropy obsolete.

Furthermore, instead of using q(s, a, θ) : S ×A×Rd′ → R, we can use q(s, θ) : S ×Rd′ →
R|A|. Therefore,

v(s, θ) := q(s, θ) · π(s, ϕ) + απ(s, ϕ) · log π(s, ϕ)

33

3. Soft Actor-Critic

Initialize: Minibatchsize n, inertia C, polyak coefficient τ , target entropy H̄
Initialize: ϕ: parameters of the neural net π
Initialize: θ: parameters of the neural net q
Initialize: ψ−, ψ: parameters of the neural net v
Initialize: Buffer B of fixed size

1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to π(s, ϕ);
5 Take action a, observe reward r, next state s′, store (s, a, r, s′) in B;
6 Sample minibatch (si, ai, ri, s

′
i), i = 1, . . . , n from B;

7 Sample new actions a′
i from π(si, ϕ) using the reparametrization trick;

8 Lq ← 1
n

∑n
i=1

1
2 (r + γv(s′

i, ψ
−)− q(si, ai, θ))2;

9 Lv ← 1
n

∑n
i=1

1
2 (q(si, a

′
i, θ)− α log π(si, a

′
i, ϕ)− v(si, ψ))2;

10 Lπ ← 1
n

∑n
i=1(α log π(si, a

′
i, ϕ)− q(si, a

′
i, θ));

11 Lα ← −α log π(si, a
′
i, ϕ)− αH̄;

12 Update θ by using Adam, minimizing Lq;
13 Update ψ by using Adam, minimizing Lv;
14 Update ϕ by using Adam, minimizing Lπ;
15 Update α by using Adam, minimizing Lα;
16 s← s′;
17 if C steps taken then
18 ψ− ← τψ + (1− τ)ψ−;
19 end
20 end
21 end

Algorithm 3.1: The algorithm Soft Actor Critic.

is the soft value function, so we do not need an extra neural net or approximation step
for the calculation of the Lq.

Of course no reparametrization trick is needed, and similar to the above simplifications,
the expected value in the policy loss can be simplified to

Lπ = π(s, ϕ) · (α log π(s, ϕ)− q(s, θ)) .

The pseudocode of this algorithm, which we will call Discrete Soft Actor-Critic, is given
in Algorithm 3.2. Note that overestimation bias counteraction by approximating two
q-functions simultaneously we discussed above for the continuous variant is also possible
here.

34

3.6. Distributional Extension

Initialize: Minibatchsize n, inertia C, polyak coefficient τ , target entropy H̄
Initialize: ϕ: parameters of the neural net π
Initialize: θ−, θ: parameters of the neural net q
Initialize: ψ−, ψ: parameters of the neural net v
Initialize: Buffer B of fixed size

1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to π(s, ϕ);
5 Take action a, observe reward r, next state s′, store (s, a, r, s′) in B;
6 Sample minibatch (si, ai, ri, s

′
i), i = 1, . . . , n from B;

7 Lq ← 1
n

∑n
i=1

1
2 (r + γπ(s′

i, ϕ) · q(s′
i, θ

−)− q(si, ai, θ))2;
8 Lπ ← 1

n

∑n
i=1 π(si, ϕ) · (α log π(si, ϕ)− q(si, θ

−));
9 Lα ← −απ(si, ϕ) · log π(si, ϕ)− αH̄;

10 Update θ by using Adam, minimizing Lq;
11 Update ψ by using Adam, minimizing Lv;
12 Update ϕ by using Adam, minimizing Lπ;
13 Update α by using Adam, minimizing Lα;
14 s← s′;
15 if C steps taken then
16 θ− ← τθ + (1− τ)θ−;
17 end
18 end
19 end

Algorithm 3.2: The algorithm Discrete SAC.

3.6 Distributional Extension

The distributional q-value approximation we discussed in Chapter 2 can be seen as a
separate component of the actual algorithms given, so one might wonder if it is possible
to extend Soft Actor-Critic to use this component. In this section, we will give two
variations of Soft Actor-Critic using quantile regression and implicit quantile networks.
The distributional extension described here was done as part of the thesis, but other
work exists on the topic, e.g. [Duan et al., 2022], which I was not aware of while deriving
this extension.

Unifying notation from QRDQN and IQN, let

q(s, a, τ) : S ×A× [0, 1]→ R,

which corresponds to Zτ (s, a) from Chapter 2. Furthermore, let

v(s, τ) : S × [0, 1]→ R

35

3. Soft Actor-Critic

be a representation of the quantile function of the distribution underlying the value
function, similar to Zτ (s, a) for the q-function.

Using this notation and the quantile Huber loss ρκ
τ , the distributional Soft Actor Critic

losses for q and v become

Lq(s, a, r, s′) = 1
N ′

N∑
i=1

N ′∑
j=1

ρκ
τi

(
r + γv(s′, τ ′

j)− q(s, a, τi)
)

and

Lv(s, a, r, s′) = 1
N ′

N∑
i=1

N ′∑
j=1

ρκ
τi

(
Ea′∼π

[
q(s, a′, τ ′

j)− α log π(s, a′, ϕ)
]
− v(s, ψ, τi)

)
.

The loss of π stays the same, using q(s, a) = Eτ [q(s, a, τ)].

We, therefore, get a quantile regression variant of Soft Actor-Critic using N = N ′ and
equidistant quantile midpoints τ = τ ′, and an implicit quantile network variant by using
τi ∼ U([0, 1]), i = 1, . . . , N and τ ′

j ∼ U([0, 1]), j = 1, . . . , N ′. Pseudocodes for both
variants, which we will call QRSAC and IQNSAC, are given in Algorithms 3.3 and 3.4
respectively.

Unfortunately, the trick of using two separate approximations of the q-function to reduce
overestimation bias does not work here anymore, as the quantiles of the minimum over
two functions are not the minimum of their quantiles.

In the discrete case, we have to omit the trick of representing v in terms of π and q for the
loss of q, since similarly to the minimum, the quantiles of a linear combination of functions
are not the linear combination of those quantiles. We can still apply that trick for Lπ

however. This gives two algorithms which we will call Discrete Quantile Regression Soft
Actor-Critic (Discrete QRSAC) and Discrete Implicit Quantile Network Soft Actor-Critic
(Discrete IQNSAC). Since the pseudocodes are a mixture of Algorithms 3.3 and 3.4 with
Algorithm 3.2 (lines 10–11 and 11–12 of Algorithms 3.3 and 3.4 respectively are replaced
by lines 8–9 of Algorithm 3.2 and network architectures are adjusted to fit the discrete
setting), they will be omitted here.

36

3.6. Distributional Extension

Initialize: Minibatchsize n, inertia C, polyak coefficient τ , target entropy H̄
Initialize: Quantile midpoints τ̂i, i = 1, . . . , N
Initialize: ϕ: parameters of the neural net π
Initialize: θ: parameters of the neural net for q(s, a, τ), τ a quantile midpoint τ̂i

Initialize: ψ−, ψ: parameters of the neural net v
Initialize: Buffer B of fixed size

1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to π(s, ϕ);
5 Take action a, observe reward r, next state s′, store (s, a, r, s′) in B;
6 Sample minibatch (si, ai, ri, s

′
i), i = 1, . . . , n from B;

7 Sample new actions a′
i from π(si, ϕ) using the reparametrization trick;

8 Lq(si, ai, ri, s
′
i)← 1

N

∑N
k=1

∑N
j=1 ρ

κ
τ̂k

(ri + γv(s′
i, τ̂j , ψ

−)− q(si, ai, τ̂k, θ));
9 Lv(si, ai, ri, s

′
i)←

1
N ′
∑N

k=1
∑N ′

j=1 ρ
κ
τ̂k

(q(si, a
′
i, τ̂j , θ)− α log π(si, a

′
i, ϕ)− v(si, τ̂k, ψ));

10 Lπ(si, ai, ri, s
′
i)← α log π(si, a

′
i, ϕ)− 1

N

∑N
k=1 q(si, a

′
i, τ̂k, θ);

11 Lα(si, a
′
i)← −α log π(si, a

′
i, ϕ)− αH̄;

12 Update θ by using Adam, minimizing the mean over all Lq;
13 Update ψ by using Adam, minimizing the mean over all Lv;
14 Update ϕ by using Adam, minimizing the mean over all Lπ;
15 Update α by using Adam, minimizing the mean over all Lα;
16 s← s′;
17 if C steps taken then
18 ψ− ← τψ + (1− τ)ψ−;
19 end
20 end
21 end

Algorithm 3.3: The quantile regression variant of Soft Actor-Critic, QRSAC, in
practice q(s, a, τ̂i) would be implemented as q : S ×A → RN .

37

3. Soft Actor-Critic

Initialize: Minibatchsize n, inertia C, polyak coefficient τ , target entropy H̄
Initialize: ϕ: parameters of the neural net π
Initialize: θ: parameters of the neural net for q(s, a, τ)
Initialize: ψ−, ψ: parameters of the neural net v
Initialize: Buffer B of fixed size

1 foreach episode do
2 Sample start state s;
3 while s not terminal do
4 Choose a according to π(s, ϕ);
5 Take action a, observe reward r, next state s′, store (s, a, r, s′) in B;
6 Sample minibatch (si, ai, ri, s

′
i), i = 1, . . . , n from B;

7 Sample new actions a′
i from π(si, ϕ) using the reparametrization trick;

8 Sample τk, τ
′
j ∼ U([0, 1]), k = 1, . . . , N , j = 1, . . . , N ′;

9 Lq(si, ai, ri, s
′
i)← 1

N

∑N
k=1

∑N
j=1 ρ

κ
τk

(ri + γv(s′
i, τj , ψ

−)− q(si, ai, τk, θ));
10 Lv(si, ai, ri, s

′
i)←

1
N ′
∑N

k=1
∑N ′

j=1 ρ
κ
τk

(q(si, a
′
i, τj , θ)− α log π(si, a

′
i, ϕ)− v(si, τk, ψ));

11 Lπ(si, ai, ri, s
′
i)← α log π(si, a

′
i, ϕ)− 1

N

∑N
k=1 q(si, a

′
i, τ̂k, θ);

12 Lα(si, a
′
i)← −α log π(si, a

′
i, ϕ)− αH̄;

13 Update θ by using Adam, minimizing the mean over all Lq;
14 Update ψ by using Adam, minimizing the mean over all Lv;
15 Update ϕ by using Adam, minimizing the mean over all Lπ;
16 Update α by using Adam, minimizing the mean over all Lα;
17 s← s′;
18 if C steps taken then
19 ψ− ← τψ + (1− τ)ψ−;
20 end
21 end
22 end

Algorithm 3.4: The implicit quantile network variant of Soft Actor-Critic, IQNSAC.

38

CHAPTER 4
Experimental Results

The main part of this thesis was implementing and evaluating the algorithms de-
scribed in Chapters 2 and 3 and DQN. This was done in Python 3.8 using PyTorch,
[Paszke et al., 2019] as the Deep Learning library.

Before discussing experimental results, some implementation details important for in-
terpreting these results will be provided and an overview of the environments will be
given.

4.1 Implementation Details
Implementation was done as single-file implementations to ensure independence and ease
of adaptability of the algorithms. Only the buffer architecture is shared between files.

All of them are OpenAI Gym compatible, [Brockman et al., 2016], which is distributed
in Python as gym by pip.

Some specific important details:

1. For better performance, the neural net approximating the distributional q-function
in IQN was split into three parts: one part qs that takes the state-action pairs as
input, another part qq that takes the quantiles as input, and a net qc combining the
outputs of these two nets by a Hadamard product to give the final approximation
of the distributional q-function.
Therefore, the complete net approximating the quantile function is given by

q(s, a, τ) = qc(qs(s, a)⊙ qq(τ)).

The Hadamard product is used to force interaction between the outputs of qs and
qq, so in theory, a one-layered qc is enough. In practice, experiments showed that

39

4. Experimental Results

multiple layers might still provide some benefit in qc, but the Hadamard product is
beneficial nonetheless.

2. Experiments showed that a Polyak update is in some cases beneficial also for updates
to the policy parameters we usually denoted with ϕ. Therefore, an additional Polyak
parameter τπ is provided in all Soft Actor-Critic variants.

3. In [Haarnoja et al., 2018a], another variant of Soft Actor-Critic is introduced, where
v is not approximated by a neural net, but

v(s) = Ea∼π [q(s, a)]

is used to approximate v by sampling an action a from π and then setting v(s) =
q(s, a) in that update step. This can also be done similarly in the distributional
case.
The variant where v is approximated separately is more interesting when discussing
the theory, which is why it was the one we covered in Chapter 3, but the variant
approximating v by using q performs a little better in practice, so this variant is
used for the presented results. Note that when doing this, you have to perform the
Polyak update on θ.

4. Wherever possible, stable-baselines3, [Raffin et al., 2021], was used to verify
the performance of the implementations.

4.2 Overview of the Environments

4.2.1 CartPole-v1

In CartPole-v1, the agent controls a cart that carries an upright pole. The goal is
to balance the pole on the cart by moving left and right. The observation space is a
4-dimensional box space, the action space is discrete with two actions, “move left” and
“move right”. The reward is always 1 and the episode ends if the pole tilts too far.
After a maximum of 500 steps, the episode terminates either way, making the maximum
undiscounted return 500.

This environment is part of the classic control environments available by default in the
gym package. We will use it to show some basic stability properties of the algorithms, as
it is relatively computationally inexpensive.

4.2.2 Autonomous Driving Environments

The main interest of this section lies in autonomous driving. The gym environments
described here were developed by Helmut Horvath and me in the CARLA simulator,
version 0.9.13 [Dosovitskiy et al., 2017].

We will use the following scenarios:

40

4.2. Overview of the Environments

• carla-lanekeeping-relative-v0: An environment featuring a 6-dimensional
state space containing, among other things, the offset from the center of the lane,
the angle to the lane, and the lane’s curvature. The action space is discrete with 9
actions controlling the steering of the car, while the throttle is set randomly at the
start of the episode. The car has to learn to drive along a highway, the map used
in this scenario is depicted in Figure 4.1. The reward, therefore, is high for small
offsets from the center of the lane.

Figure 4.1: A schematic of Town04 in the CARLA simulator, used for the lane keeping
and the combine-adaptive scenario. In both, the car has to drive on the infinite-loop
highway. [CARLADocs, 2022]

The actions work in a relative way, which means that the agent controls how much
to change the current steering. By doing this, the car can fine-tune the individual
steering angles needed for different curves much more and can reach much higher
performance than if the actions worked in an absolute way.
The car is placed on the same part of the road at the start of every episode, so the
agent has to first learn how to drive a right turn before it even experiences any left
turn.

• carla-cruisecontrol-v0: Another discrete environment. The car is placed
at the start of one of the long, straight roads in the map depicted in Figure 4.2.
The agent can control the throttle and brake, discretized as 7 actions, and using
throttle and brake at the same time is not possible. At the start of each episode, a
random target velocity is chosen. This target velocity changes every timestep with

41

4. Experimental Results

a probability of 1/150, or about 0.7%. After going over a specified line near the
end of the straight part of the road, the target velocity is set to zero, so the car
has to perform an emergency brake.

Figure 4.2: A schematic of Town06 in the CARLA simulator, used for the cruise control
scenario. [CARLADocs, 2022]

Reward is given for being closer to target velocity, but being over this target gives
a little less reward than being below the target by the same amount, so the car
learns to respect speed limits.

• carla-lanekeeping-v0: The continuous counterpart of carla-lanekeeping
-relative-v0 works in exactly the same way, but the agent has the full range of
steering, i.e. the interval [−1, 1], available.

• carla-combined-adaptive-v0: A continuous combination of cruise control
and lane keeping, where the agent controls the car by setting throttle/brake actions
in [−1, 1] (values smaller than zero correspond to braking, values bigger than zero
to throttle) and steering actions in [−1, 1] at the same time, meaning the action
space is [−1, 1]× [−1, 1].

The map is the same as in the lane keeping scenarios, but in addition, another car
with a different velocity is occasionally spawned in front of the agent. Reward is
given as a combination of cruise control and lane keeping rewards, scaled so the
agent keeps a safe distance from the other car.

42

4.3. Results

4.3 Results
The plots in this section show the average (undiscounted) return per step during training.
To generate them, 50 runs of each algorithm and parameter set depicted were generated,
and the return for each episode was saved. Then, the return for each step in each run
is generated, so for example, if a run had 20 steps in the first episode, and 30 in the
second, the first episode had a return of 2 and the second episode a reward of 3, an
array consisting of 20 entries of 2, then 30 entries of 3 is generated. Lastly, a moving
average of 5000 steps is applied such that trends in training are more visible, and the
mean performance and a 95% confidence interval are plotted. This approach to plotting
the performance should give a good representation of the training process, including
exploration properties.

Hyperparameters were chosen by a mixture of automatic tuning using optuna,
[Akiba et al., 2019], and manual adaptation so the parameters used match the ones
from the papers presented in the previous chapters more closely. In the interest of
reproducibility, but so as not to clutter this section, all hyperparameters are included in
Appendix A.

All computational results presented were obtained using the CLIP cluster (https:
//clip.science). For early testing and hyperparameter tuning, the Vienna Scientific
Cluster was used (https://vsc.ac.at/).

4.3.1 Stability

The first things we want to take a look at are the stability properties of the DQN-based
algorithms. Figure 4.3 shows performance plots in CartPole-v1 in dependence of
different values of the inertia C, which increases stability for higher values.

For C = 1, only the performance of DQN even increases, QRDQN and IQN diverge
completely. At C = 20, IQN starts to learn, while QRDQN still diverges. At C = 50, all
algorithms increase in performance over time, but QRDQN starts to diverge a bit again
after the initial bump in performance, although it will probably retain better average
returns than a random policy.

At C = 100, DQN and QRDQN both have very good performance, while IQN’s perfor-
mance has not really changed from C = 50, as it seems to hit a ceiling at about 400
average return. This is due to network capacity and not stability, and we will return to
this problem later.

Note that the performance curve of DQN notably flattens from C = 1 to C = 100.
This is due to C slowing down training speed, which is also how the stability properties
improve, but this necessitates a balance between stability and learning speed, making C
a not-so-easy-to-tune parameter.

Also, note that no algorithm really hits the maximum of 500 average reward. This is
due to how exploration works in this class of algorithms. The exploration parameter

43

https://clip.science
https://clip.science
https://vsc.ac.at/

4. Experimental Results

0 20000 40000 60000 80000
steps

100

200

300

400

500

av
er

ag
e

re
tu

rn

C=50

0

100

200

300

400
av

er
ag

e
re

tu
rn

C=1

0 20000 40000 60000 80000
steps

C=100

C=20

DQN
QRDQN
IQN

Figure 4.3: Performance plots depicting the effect of the stability parameter C on training
the DQN-based algorithms.

ε was set to 5% after 5000 steps, meaning on average every 20th action is completely
random. Therefore, if a couple of successive actions are wrong, the agent will not be able
to recover, ending the episode early.

In contrast, Discrete SAC reaches this theoretical maximum for C = 1, as depicted in
Figure 4.4. Note that the SAC variants employ an extra stability parameter, τ , so C of
the DQN variants is not directly comparable to the C of the SAC variants.

Discrete IQNSAC is more or less stable, but not able to reach as high a performance,
while Discrete QRSAC improves in performance initially, but quickly starts diverging
again.

At C = 2 all algorithms are mostly stable, not dropping in performance, but Discrete
SAC still is the only one to come close to the theoretical maximal performance. At
C = 10, Discrete QRSAC also reaches very high performances, and at C = 20 all three
variants reach high performance, although Discrete IQNSAC drops it again after the
initial high and Discrete SAC has a very flat learning curve, meaning that this high focus
on stability hurts its performance quite a bit already.

Altogether, the conclusion for both the DQN and SAC variants is, that the non-
distributional versions behave the most stable, while the implicit quantile network
variants initially perform second best, but do not benefit as quickly from added stability
as the quantile regression variants do.

44

4.3. Results

0 20000 40000 60000 80000
steps

100

200

300

400

500

av
er

ag
e

re
tu

rn

C=10

100

200

300

400

500

av
er

ag
e

re
tu

rn

C=1

0 20000 40000 60000 80000
steps

C=20

C=2

DiscreteSAC
DiscreteQRSAC
DiscreteIQNSAC

Figure 4.4: Performance plots depicting the effect of the stability parameter C on training
the SAC-based algorithms.

4.3.2 Performance in Autonomous Driving

From the previous section, one would get the picture that distributional q-value approxi-
mation makes no sense since it behaves much more unstably than its non-distributional
counterpart. But CartPole-v1 is a relatively easy environment. In this section, we
will look at the much more complex autonomous driving environments and will show
that distributional extensions of DQN and SAC can make a lot of sense to use.

Cruise Control

0 20000 40000 60000 80000
steps

100

125

150

175

200

225

250

av
er

ag
e

re
tu

rn

DiscreteSAC
DiscreteQRSAC
DiscreteIQNSAC

0 20000 40000 60000 80000
steps

DQN
QRDQN
IQN

Figure 4.5: Performance in carla-cruisecontrol-v0.

45

4. Experimental Results

We start with the discrete environments. In carla-cruisecontrol-v0, depicted in
Figure 4.5, all algorithms generally reach good performance. The distributional SAC
variants have a slight bump in performance at the start, most likely due to stability, but
they recover quickly, therefore no increase in the stability parameters is needed. DQN
has the worst performance, but both QRDQN and IQN perform well, with performances
inside of the confidence intervals of the SAC variants, and therefore no actual difference
is obvious between the two classes of algorithms. It is notable, however, that quantile
regression performs best in both classes, closely followed by implicitly quantile networks.

Discrete Lane Keeping

A different picture is given for carla-lanekeeping-relative-v0, depicted in Figure
4.6. Here, the DQN-based algorithms perform notably worse than their SAC counterparts.
Thinking back to the analogy of the obstacle course in the introduction of Chapter 3,
this makes sense: While the first and second turns of the lane keeping scenario are not
so hard even on higher velocities, the third turn is very tight and therefore has quite
narrow error margins. Even a single wrong action can result in the agent not being able
to recover, corresponding to the first obstacle from the analogy. The soft ε-policies used
in the DQN variants will not be able to consistently overcome this turn for higher values
of ε, but lower values will result in the next turns not being learnable since these are the
first left turns the agent encounters, therefore needing some exploration. This results in
the low returns seen on the right side of Figure 4.6, while the SAC variants are all able
to satisfactorily perform in the environment.

0 20000 40000 60000 80000
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

DiscreteSAC
DiscreteQRSAC
DiscreteIQNSAC

0 20000 40000 60000 80000
steps

DQN
QRDQN
IQN

Figure 4.6: Performance in carla-lanekeeping-relative-v0.

46

4.3. Results

A Note on Capacity

This is also a good opportunity to talk about how the network capacities impact per-
formance and how they were chosen: As we have seen in Figure 4.4, capacity can act
like a ceiling for performance. If the network is not expressive enough to capture the
environment dynamics, a certain return can never be surpassed.

0 20000 40000 60000 80000
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

DiscreteIQNSAC, lower capacity
DiscreteIQNSAC

0 20000 40000 60000 80000
steps

DiscreteQRSAC, lower capacity
DiscreteQRSAC

Figure 4.7: Performance in carla-lanekeeping-relative-v0.

To assess whether or not capacity is the reason for a bounded performance, one has
to increase the network capacity and re-run the algorithm. (Note that, usually, the
q-networks are the bottleneck as they have to capture the environment dynamics, the
policy is seldom the culprit for low performance due to low network capacity.) Figure
4.7 shows the difference between the runs of Discrete IQNSAC and Discrete QRSAC
from Figure 4.6 and the runs from the same hyperparameters, except that the q-networks
were kept at lower capacity, removing two hidden layers for both. For the exact hyperpa-
rameters used see Tables A.15, A.20 for the Discrete IQNSACs, Tables A.14, A.19 for
the Discrete QRSACs. We can see that the higher capacity improves performance a bit,
although maybe not as much as one might expect from such a drastic increase in network
parameters.

Since higher network capacities usually lead to higher training times, this is a tradeoff
between runtime and performance. To ensure statistically sound results, all graphs in
this thesis show confidence intervals of the return over 50 runs. Therefore, the capacity
was tested using lower run counts, based on which it was chosen so runtime would be
reasonable, but performance would not be notably impacted, in order to show results
representative of the ideas behind the algorithms and not results constrained by low
network capacities.

Also, note that the network capacity needed is highly dependent on the algorithms
used. Discrete SAC only has to approximate q-values, while Discrete QRSAC has to
approximate the distribution underlying those q-values at set quantile points, and Discrete
IQNSAC even has to approximate the whole quantile function of those distributions.
Their continuous counterparts have to do this for a continuous action space, requiring

47

4. Experimental Results

even more capacity. This leads to even more careful considerations when choosing the
algorithm for a given environment. In a deterministic environment, for example, using
distributional q-value approximation does not make much sense, whereas, in a highly
stochastic environment, one might benefit largely from having access to the whole quantile
function describing environment interactions in much more detail.

Continuous Lane Keeping

In continuous lane keeping, the agent has the whole action space of [−1, 1] for steering at
its disposal. But taking actions outside the interval [−0.1, 0.1] will result in steering that
is too extreme, crashing the car with high probability. Therefore, the agent has to learn
to ignore the actions outside of this interval early on in exploration, making SAC-based
algorithms work well for this scenario.

As we can see, the added expressiveness of implicit quantile networks seems to pay off
here. Although slower in learning, IQNSAC significantly overtakes SAC and QRSAC
in performance. Also, training in this environment seems to benefit from distributional
q-value approximation, as QRSAC and IQNSAC have about 30% more performance than
SAC.

0 20000 40000 60000 80000 100000
steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

SAC
QRSAC
IQNSAC

Figure 4.8: Performance in carla-lanekeeping-v0.

48

4.3. Results

Combined Adaptive

The last environment presented is the combination of cruise control and lane keeping,
where the agent has to combine all the skills needed for the previous environments
and additionally keep a safe distance from a car driving in front. The learning curve
is depicted in Figure 4.9. Here, QRSAC performs best from the beginning and also
reaches the highest return overall. IQNSAC comes close, at about 100 000 steps the
two confidence intervals are about the same, but performs a bit worse altogether, with
learning also needing a longer initial phase. SAC performs comparably to QRSAC at
first, but then seems to reach bounds in performance it cannot break through. Overall,
distributional methods seem to perform better in this task as well, but the additional
information of approximating the whole quantile function does not provide any benefit.

0 20000 40000 60000 80000 100000 120000 140000
steps

1000

500

0

500

1000

av
er

ag
e

re
tu

rn

SAC
QRSAC
IQNSAC

Figure 4.9: Performance in carla-combined-adaptive-v0.

Summary

Altogether, the exploration provided by Soft Actor-Critic outperforms the soft ε-
exploration in all autonomous driving environments we studied. Additionally, distribu-
tional q-value approximation yields higher returns, justifying the combination of the two
approaches.

49

CHAPTER 5
Conclusion

Motivated by autonomous driving tasks, we started looking at the basics of Reinforcement
Learning, defining concepts and extending them to modern deep learning architectures.

In the next two chapters, we looked at the methods in the title of the thesis, introducing
the theory behind approximation of the return distribution and Maximum Entropy
Reinforcement Learning, giving an overview of the literature and proofing some of the
results. At the end of Chapter 3, we combined the two approaches.

Chapter 4 then served as an experimental justification for this combination. After giving
some details on the implementation and environments used, we showed that the resulting
algorithms work and that using distributional Soft Actor-Critic methods will outperform
the two methods in isolation.

But deciding whether to use quantile regression or implicit quantile network-based
methods, the answer is not so clear. If highest possible performance is not so important,
the recommendation is to go with quantile regression, as it is the simpler approach and
also runs a little faster due to relying on simpler network architecture. Also, it often
outperforms implicit quantile networks, seemingly if the environment dynamics are not
so complicated that they cannot be accurately represented by discrete quantile points. If
an increase in performance by a few percentage points is important, both methods have
to be tested, as implicit quantile networks may slightly outperform quantile regression.

51

APPENDIX A
Hyperparameters

A.1 Stability – DQNs

Hyperparameter Value
buffer_size 10 000
eps_coolsteps 5 000
eps_end 0.05
eps_start 1
gamma 0.99
learning_starts 257
lr 0.00025
q_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=4, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=2, bias=True)
)
)

sampling_size 256
tau 1

Table A.1: Hyperparameters of DQN in CartPole-v1

53

A. Hyperparameters

Hyperparameter Value
buffer_size 10 000
eps_coolsteps 5 000
eps_end 0.05
eps_start 1
gamma 0.99
learning_starts 257
lr 0.000 25
nr_quantiles 25
q_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=4, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=50, bias=True)
)
)

sampling_size 256
tau 1

Table A.2: Hyperparameters of QRDQN in CartPole-v1

54

A.1. Stability – DQNs

Hyperparameter Value
buffer_size 10 000
eps_coolsteps 5 000
eps_end 0.05
eps_start 1
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 25
q_final_net FinalNet(

(seq): Sequential(
(0): Linear(in_features=128, out_features=2, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=4, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
)
)

quantile_samples 25
sampling_size 256
tau 1

Table A.3: Hyperparameters of IQN in CartPole-v1

55

A. Hyperparameters

A.2 Stability – SACs

Hyperparameter Value
H 0.4
alpha 0.12
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 25
lr_alpha 0.000 1
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=4, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=2, bias=True)
)
)

q1_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=4, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=2, bias=True)
)
)

q2_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=4, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=2, bias=True)
)
)

sampling_size 256
tau 0.05
tau_pi 0.005

Table A.4: Hyperparameters of DiscreteSAC in CartPole-v1

56

A.2. Stability – SACs

Hyperparameter Value
H 0.4
alpha 0.12
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 25
lr_alpha 0.000 1
nr_quantiles 25
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=4, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=2, bias=True)
)
)

q_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=4, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=50, bias=True)
)
)

sampling_size 256
tau 0.05
tau_pi 0.005

Table A.5: Hyperparameters of DiscreteQRSAC in CartPole-v1

57

A. Hyperparameters

Hyperparameter Value
H 0.4
alpha 0.12
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 25
lr_alpha 0.000 1
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=4, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=2, bias=True)
)
)

q_final_net FinalNet(
(seq): Sequential(
(0): Linear(in_features=128, out_features=2, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=4, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
)
)

quantile_samples 25
sampling_size 256
tau 0.05
tau_pi 0.005

Table A.6: Hyperparameters of DiscreteIQNSAC in CartPole-v1

58

A.3. Cruise Control

A.3 Cruise Control

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=3, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=7, bias=True)
)
)

q1_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=3, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=7, bias=True)
)
)

q2_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=3, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=7, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.7: Hyperparameters of DiscreteSAC in carla-cruisecontrol-v0

59

A. Hyperparameters

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
nr_quantiles 25
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=3, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=7, bias=True)
)
)

q_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=3, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=175, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.8: Hyperparameters of DiscreteQRSAC in carla-cruisecontrol-v0

60

A.3. Cruise Control

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=3, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=7, bias=True)
)
)

q_final_net FinalNet(
(seq): Sequential(
(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=7, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=3, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

quantile_samples 10
sampling_size 256
tau 0.005
tau_pi 0.005

Table A.9: Hyperparameters of DiscreteIQNSAC in carla-cruisecontrol-v0
61

A. Hyperparameters

Hyperparameter Value
C 2 000
buffer_size 10 000
eps_coolsteps 20 000
eps_end 0.05
eps_start 1
gamma 0.99
learning_starts 257
lr 0.000 25
q_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=3, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=7, bias=True)
)
)

sampling_size 256
tau 1

Table A.10: Hyperparameters of DQN in carla-cruisecontrol-v0

62

A.3. Cruise Control

Hyperparameter Value
C 2 000
buffer_size 10 000
eps_coolsteps 20 000
eps_end 0.05
eps_start 1
gamma 0.99
learning_starts 257
lr 0.000 25
nr_quantiles 25
q_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=3, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=175, bias=True)
)
)

sampling_size 256
tau 1

Table A.11: Hyperparameters of QRDQN in carla-cruisecontrol-v0

63

A. Hyperparameters

Hyperparameter Value
C 2 000
buffer_size 10 000
eps_coolsteps 20 000
eps_end 0.05
eps_start 1
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 25
q_final_net FinalNet(

(seq): Sequential(
(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=7, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=3, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

quantile_samples 25
sampling_size 256
tau 1

Table A.12: Hyperparameters of IQN in carla-cruisecontrol-v0

64

A.4. Discrete Lane Keeping

A.4 Discrete Lane Keeping

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=6, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=9, bias=True)
)
)

q1_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=9, bias=True)
)
)

q2_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=9, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.13: Hyperparameters of DiscreteSAC in carla-lanekeeping-relative-v0

65

A. Hyperparameters

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
nr_quantiles 25
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=6, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=9, bias=True)
)
)

q_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=512, bias=True)
(7): ReLU()
(8): Linear(in_features=512, out_features=512, bias=True)
(9): ReLU()
(10): Linear(in_features=512, out_features=225, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.14: Hyperparameters of DiscreteQRSAC in
carla-lanekeeping-relative-v0

66

A.4. Discrete Lane Keeping

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=6, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=9, bias=True)
)
)

q_final_net FinalNet(
(seq): Sequential(
(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=9, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
)
)

quantile_samples 10
sampling_size 256
tau 0.005
tau_pi 0.005

Table A.15: Hyperparameters of DiscreteIQNSAC in
carla-lanekeeping-relative-v0

67

A. Hyperparameters

Hyperparameter Value
C 50
buffer_size 10 000
eps_coolsteps 40 000
eps_end 0.05
eps_start 1
gamma 0.99
learning_starts 257
lr 0.000 25
q_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=9, bias=True)
)
)

sampling_size 256
tau 1

Table A.16: Hyperparameters of DQN in carla-lanekeeping-relative-v0

68

A.4. Discrete Lane Keeping

Hyperparameter Value
C 50
buffer_size 10 000
eps_coolsteps 40 000
eps_end 0.05
eps_start 1
gamma 0.99
learning_starts 257
lr 0.000 25
nr_quantiles 25
q_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=225, bias=True)
)
)

sampling_size 256
tau 1

Table A.17: Hyperparameters of QRDQN in carla-lanekeeping-relative-v0

69

A. Hyperparameters

Hyperparameter Value
C 50
buffer_size 10 000
eps_coolsteps 40 000
eps_end 0.05
eps_start 1
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 25
q_final_net FinalNet(

(seq): Sequential(
(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=9, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

quantile_samples 25
sampling_size 256
tau 1

Table A.18: Hyperparameters of IQN in carla-lanekeeping-relative-v0

70

A.5. Discrete Lane Keeping – Lower Capacities

A.5 Discrete Lane Keeping – Lower Capacities

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
nr_quantiles 25
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=6, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=9, bias=True)
)
)

q_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Linear(in_features=512, out_features=225, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.19: Hyperparameters of DiscreteQRSAC with lower capacity in
carla-lanekeeping-relative-v0

71

A. Hyperparameters

Hyperparameter Value
C 4
H 0.5
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 1
max_grad_norm 1
policy_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=6, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=128, bias=True)
(3): ReLU()
(4): Linear(in_features=128, out_features=9, bias=True)
)
)

q_final_net FinalNet(
(seq): Sequential(
(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=9, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=6, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

quantile_samples 10
sampling_size 256
tau 0.005
tau_pi 0.005

Table A.20: Hyperparameters of DiscreteIQNSAC with lower capacity in
carla-lanekeeping-relative-v0

72

A.6. Continuous Lane Keeping

A.6 Continuous Lane Keeping

Hyperparameter Value
C 1
H −1
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 15
q1_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=7, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=1, bias=True)
)
)

q2_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=7, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=1, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.21: Hyperparameters of SAC in carla-lanekeeping-v0

73

A. Hyperparameters

Hyperparameter Value
C 1
H −1
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 15
nr_quantiles 25
q1_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=7, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=25, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.22: Hyperparameters of QRSAC in carla-lanekeeping-v0

74

A.6. Continuous Lane Keeping

Hyperparameter Value
C 1
H −1
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 15
q_final_net FinalNet(

(seq): Sequential(
(0): Linear(in_features=256, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=1, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=7, out_features=256, bias=True)
)
)

quantile_samples 25
sampling_size 256
tau 0.005
tau_pi 0.005

Table A.23: Hyperparameters of IQNSAC in carla-lanekeeping-v0

75

A. Hyperparameters

A.7 Combined Adaptive

Hyperparameter Value
C 5
H −1
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 15
q1_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=12, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=1, bias=True)
)
)

q2_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=12, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=1, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.24: Hyperparameters of SAC in carla-combined-adaptive-v0

76

A.7. Combined Adaptive

Hyperparameter Value
C 5
H −1
alpha 1
buffer_size 10 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 15
nr_quantiles 25
q1_net LinearNet(

(seq): Sequential(
(0): Linear(in_features=12, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ReLU()
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ReLU()
(6): Linear(in_features=256, out_features=25, bias=True)
)
)

sampling_size 256
tau 0.005
tau_pi 0.005

Table A.25: Hyperparameters of QRSAC in carla-combined-adaptive-v0

77

A. Hyperparameters

Hyperparameter Value
C 5
H −1
alpha 1
buffer_size 100 000
gamma 0.99
learn_alpha True
learning_starts 257
lr 0.000 15
lr_alpha 0.000 15
q_final_net FinalNet(

(seq): Sequential(
(0): Linear(in_features=512, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=1, bias=True)
)
)

q_quantiles_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=1, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
)
)

q_states_net LinearNet(
(seq): Sequential(
(0): Linear(in_features=12, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=512, bias=True)
)
)

quantile_samples 25
sampling_size 256
tau 0.005
tau_pi 0.005

Table A.26: Hyperparameters of IQNSAC in carla-combined-adaptive-v0

78

Bibliography

[Akiba et al., 2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019).
Optuna: A next-generation hyperparameter optimization framework. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

[Bellemare et al., 2017] Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distri-
butional perspective on reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning – Volume 70, ICML’17, page 449–458. JMLR.org.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schul-
man, J., Tang, J., and Zaremba, W. (2016). OpenAI gym.

[CARLADocs, 2022] CARLADocs (2022). Maps and navigation. https://carla.
readthedocs.io/en/0.9.14/core_map/. Accessed: 2023-05-01.

[Christodoulou, 2019] Christodoulou, P. (2019). Soft actor-critic for discrete action
settings.

[Dabney et al., 2018a] Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018a).
Implicit quantile networks for distributional reinforcement learning. In Dy, J. and
Krause, A., editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1096–1105.
PMLR.

[Dabney et al., 2018b] Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R.
(2018b). Distributional reinforcement learning with quantile regression. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innova-
tive Applications of Artificial Intelligence Conference and Eighth AAAI Symposium
on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI
Press.

[Dosovitskiy et al., 2017] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun,
V. (2017). CARLA: An open urban driving simulator. In Proceedings of the 1st Annual
Conference on Robot Learning, pages 1–16.

79

https://carla.readthedocs.io/en/0.9.14/core_map/
https://carla.readthedocs.io/en/0.9.14/core_map/

[Duan et al., 2022] Duan, J., Guan, Y., Li, S. E., Ren, Y., Sun, Q., and Cheng, B. (2022).
Distributional soft actor-critic: Off-policy reinforcement learning for addressing value
estimation errors. IEEE Transactions on Neural Networks and Learning Systems,
33(11):6584–6598.

[Geoffrey Hinton, 2012] Geoffrey Hinton, Nitish Srivastava, K. S. (2012). Neural
networks for machine learning: Lecture 6a, overview of mini-batch gradient de-
scent. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf. Accessed: 2023-04-19.

[Haarnoja et al., 2018a] Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and Levine,
S. (2018a). Learning to walk via deep reinforcement learning.

[Haarnoja et al., 2018b] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018b).
Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Dy, J. and Krause, A., editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1861–1870. PMLR.

[Haarnoja et al., 2019] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan,
J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and Levine, S. (2019). Soft actor-critic
algorithms and applications.

[Huber, 1964] Huber, P. J. (1964). Robust Estimation of a Location Parameter. The
Annals of Mathematical Statistics, 35(1):73 – 101.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., and Hassabis, D. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and
Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc.

[Raffin et al., 2021] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and
Dormann, N. (2021). Stable-baselines3: Reliable reinforcement learning implementa-
tions. Journal of Machine Learning Research, 22(268):1–8.

80

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[Sutton, 2023] Sutton, R. S. (2023). Figures for: Reinforcement Learning: An In-
troduction. http://incompleteideas.net/book/figures/figures.html.
Accessed: 2023-04-19.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning:
An Introduction. MIT press.

[Ziebart, 2010] Ziebart, B. D. (2010). Modeling Purposeful Adaptive Behavior with the
Principle of Maximum Causal Entropy. PhD thesis, USA. AAI3438449.

81

http://incompleteideas.net/book/figures/figures.html

	Kurzfassung
	Abstract
	Introduction
	Reinforcement Learning Concepts
	Basic Definitions
	Temporal Difference Learning
	Policy Gradient Methods
	Deep Reinforcement Learning

	Distributional RL
	Categorical DQN
	Quantile Regression DQN
	Implicit Quantile Networks

	Soft Actor-Critic
	Maximum Entropy Objective
	Theoretical Analysis
	Soft Actor-Critic, a Practical Approximation to Soft Policy Iteration
	Automatic Entropy Temperature Tuning
	Discrete Variant
	Distributional Extension

	Experimental Results
	Implementation Details
	Overview of the Environments
	Results

	Conclusion
	Hyperparameters
	Stability – DQNs
	Stability – SACs
	Cruise Control
	Discrete Lane Keeping
	Discrete Lane Keeping – Lower Capacities
	Continuous Lane Keeping
	Combined Adaptive

	Bibliography

