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ABSTRACT
Pumped hydro storage power systems are crucial to account

for grid instabilities by providing flexibility services. To further
increase flexibility, the acceleration of switching between oper-
ating modes is necessary. This can be achieved through precise
and automated process control with reinforcement learning (RL).
Besides the benefits of RL, safety concerns inhibit industrial-scale
applications for process control with RL.

We present measures to increase the reliability and stability
of RL algorithms to enable applications for the control of energy
systems. We demonstrate the viability of our approach by apply-
ing it to the control of the pump start-up process of a reversible
pump turbine. To train the RL algorithm, we use a simulation
model that accurately represents the test rig of a pump turbine
located at the laboratory of TU Wien. Our results show that RL
is suitable for finding optimal control strategies that can compete
with traditional approaches. However, finding the optimal policy
still requires a lot of computational effort. Future research will
focus on optimizing the RL framework and then transferring the
results to the real machine unit at the test facility.

Keywords: reinforcement learning, pump turbine, process
control, reliable machine learning

1. INTRODUCTION
The substantial increase of volatile renewable energy sources

in the electricity mix is challenging the stability of the grid.
Pumped hydro storage systems are well suited to account for
the volatility and maintain the required grid frequency through
their fast reaction times and reactive power support. With the
transition from fossil-fueled power plants, which are currently
still providing a large part of grid stability services, to a fully
renewable energy supply, pumped hydro storage power systems
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will need to provide even more flexibility in the future [1]. Cur-
rently, operating mode changes have fixed timings with signifi-
cant safety margins. To increase flexibility, faster reaction times
for the switches between operating modes become necessary,
which can only be achieved with a precise and automated pro-
cess control [2]. While traditional control strategies such as
proportional-integral-derivate (PID) controllers or model-based
predictive control (MPC) methods are well-established control
technologies, reinforcement learning (RL), a type of machine
learning, regularly outperforms traditional controllers because it
learns an optimal control strategy through direct interaction with
its environment and can hence adjust to changing conditions [3].
Therefore, RL has the potential to surpass human-level perfor-
mance and reveal optimization opportunities that were previously
unknown [4]. But despite the great potential of RL, its applica-
tion for process control at industrial-scale is still very rare. In
our work, we identify the necessary requirements to apply RL to
energy systems using a reversible pump turbine as a use case. We
train two state-of-the-art RL algorithms to control a model pump
turbine to operate as a pump within a simulation model and com-
pare their performance to traditional control methods. Thereby,
we build upon our preliminary work published in [5] and expand
it to use a sophisticated simulation model, accurately represent-
ing the pump-turbine test rig at the laboratories of the Institute
of Energy Systems and Thermodynamics (IET) at TU Wien [6].
Further, we extended the use case to span the whole operation as
a pump and train and compare different RL algorithms.

2. REINFORCEMENT LEARNING FOR PROCESS CONTROL
2.1 Reinforcement Learning

Reinforcement learning (RL) is one of the three core
paradigms of machine learning, together with supervised and un-
supervised learning. In supervised learning, the algorithm learns
to map input to output data from labeled training data, and unsu-
pervised learning algorithms explore unlabeled data sets to find
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FIGURE 1: Schematic diagram of a Markov decision process (MDP) as
used for formulating reinforcement learning (RL) problems, after [7].

inherent structures. RL algorithms don’t learn from static data
sets but find the optimal strategy for selecting actions in a given
situation through direct interaction with the learning environ-
ment, guided by a scalar reward signal. Without prior knowledge
of which actions to take, RL algorithms explore the state space
through trial and error, aiming to maximize the reward. [7]

RL problems are formulated as Markov decision processes
(MDPs), as shown in Fig. 1. The characteristic of the Markov
property, meaning that the future state depends only on the current
state and action, not on the sequence of events that preceded it, is
a prerequisite for the modeling and learning process. However, it
is important to note that not all real-world problems comply with
the Markov property, and violations are handled by introducing
additional information that describes the future state. This results
in a partially observable MDP, where it is significantly harder to
find the optimal policy. [4]

RL problems are stochastic sequential decision-making prob-
lems. When presented with a state 𝑠𝑡 , a so-called agent decides
for an action 𝑎𝑡 based on its control strategy or policy 𝜋. This
action leads to a transition in the environment, yielding a new
state 𝑠𝑡+1, evaluated with a corresponding reward signal 𝑟𝑡+1.
The agent aims to learn an optimal policy 𝜋∗ that maximizes the
cumulative reward, called the return 𝐺𝑡 , over time. [7]

To estimate the value of a state with the state-value function
𝑣𝜋 (𝑠), the Bellman Equation

𝑣𝜋 (𝑠) = E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠] (1)

calculates the expected return when following the policy 𝜋, start-
ing from the state 𝑠. The action-value function

𝑞𝜋 (𝑠, 𝑎) = E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2)

estimates the expected return, given a state 𝑠 and an action 𝑎, and
then following the policy 𝜋.

To ensure that the RL agent explores the whole state-space
of the environment, it sometimes has to randomly decide on
actions, even though another action would have a higher action
value. Finding a true optimal policy could not be guaranteed
if the agent only acts deterministically. Conversely, the agent
needs to act greedy, i.e., take actions that it knows to yield high
rewards, to maximize the episode return [8]. To balance between
exploration and exploitation is a key challenge in RL, and tuning
of the exploration hyper-parameters of the learning algorithm is
a fundamental part of every RL problem.

Generally, RL algorithms can be classified into four main
groups [3]:
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FIGURE 2: Structure of an actor-critic RL class problem formulation,
after [3].

• Model-based algorithms estimate the transition model
𝑝(𝑠′, 𝑟 |𝑠, 𝑎), i.e. the probability that the environment will
transition to state 𝑠′ with reward 𝑟, given the current state 𝑠

and action 𝑎, and use it directly for control.

• Value-based algorithms use a so-called critic to estimate
the Q-function, which calculates the value of a state with
the state-value function (Eq. 2), and an agent’s policy on the
Q-value.

• Policy-gradient methods directly optimize an agent’s policy
using gradient ascent to maximize the expected return, using
a so-called actor.

• Actor-critic algorithms combine value-based and policy-
gradient methods, as shown in Fig. 2, where the calculation
of the value function is used to evaluate the current policy
and the actor then implements the policy and selects the
following action.

Besides the distinction between model-based and model-free
RL algorithms (value-based, policy-gradient, and actor-critic), a
key differentiation is made between on- and off-policy RL meth-
ods. In on-policy RL, the same policy that gets updated during
learning is used to select actions. Off-policy algorithms use two
different policies (one behavior and one target policy) during
training. The behavior policy selects the next action to explore
the environment’s state space, while the target policy is con-
tinuously being evaluated and improved, ultimately yielding the
optimal policy [7]. Off-policy RL can be particularly beneficial
for controlling processes in real machine units, as described in
Sect. 2.2.

2.2 Reinforcement Learning for Process Control
Applications of RL for process control have increased sig-

nificantly over the last few years. Currently, the best-performing
traditional control methods rely on complex models, and deci-
sions are based on open-control-loop simulations [9]. With RL,
once the algorithm has found the optimal control policy, it can
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quickly adapt and control processes with low computational ef-
fort. The main advantage of RL is the potential to surpass human
level performance and to reveal optimization opportunities that
were previously unknown [4].

The publication of several reviews covering recent progress
in RL methods for process control underlines the actuality and
research interest in the topic [3, 4, 9, 10]. However, all studies
conclude that even though the potential of RL is assessed to be
high, real-world industrial applications of RL for process control
are still rare. The main implementation barrier for using RL for
process control certainly is safety concerns [11].

Especially in the domain of energy systems, applications are
far from being industry-ready. Most use cases for RL in energy
systems deal with building energy management or dispatching
problems [12]. Cao et al. [13] list a few studies that propose
and test RL for operational control in power systems to optimize
stability controllers. Apart from that, successful implementations
where an RL agent controls the operation of an industrial-scale
energy system are unknown to the authors.

To account for safety requirements, constraints within the
environment must be met by the RL policy to ensure a level of
control stability [9]. Therefore, RL agents must ensure constraint
satisfaction with high probabilities [11].

We propose the following measures to improve and ensure
the reliability of RL for process control: First, offline pre-training
of the RL agent on a simulation model before transferring it to
control processes online ensures safe operation. We suggest the
concept of policy transfer, whereby the agent obtains the optimal
policy in a simulated environment. Then, the policy is applied to
the real process, where it adapts to actual conditions [9]. This way,
training gets sped up considerably, as the learning process in the
simulated environment is much faster than when operating the real
process. Second, using off-policy RL algorithms may increase
trustworthiness, as the performance of the RL target policy can
be estimated without actually executing it. The environment is
being controlled with the reliable behavior policy, which prevents
entering unwanted machine conditions. To assure that a newly
found policy yields good results without direct execution, the
computation of confidence bounds as a performance measure is
recommended [14]. Third, we propose to use a digital twin (DT)
platform that incorporates the virtual replication of a machine unit
and allows for real-time communication between the physical
entity and its simulation model. The connection between the
virtual and the physical entity of the DT makes it possible to
develop an optimal control service using RL [5]. When the agent
finished training on the virtual entity of the DT, it gets deployed
to control the physical unit. As a result, unforeseen physics
previously overlooked in the simulation model could then be
eliminated as the RL agent adapts to the actual conditions and
physics in the machine unit.

This work presents the first step for applying RL for pro-
cess control – training the agent within a simulated environment.
Future research will deal with assessing the other concepts to
improve the reliability of RL and the transfer to the real machine
unit.

FIGURE 3: Cross-sectional depiction of a reversible pump turbine with
relevant components for pump start-up.

3. USE CASE
To demonstrate our concept for optimal control with rein-

forcement learning (RL) for energy systems, we apply an RL
algorithm to control processes for the operation of a reversible
pump turbine. Controlling the operation as a pump within a
simulated environment thereby serves as a proof-of-concept.

The documentation of the simulation model characteristics
can be found in [15]. The model represents the pump turbine
test rig at the laboratories of the Institute of Energy Systems and
Thermodynamics (IET) at TU Wien [6].

3.1 Pump Operation
To operate a pump turbine in pump mode, the water within

the turbine runner in stand-still must first be displaced by air
to minimize the start-up torque. Therefore, the headwater-sided
spherical valve and guide vanes must be closed so that no water
enters the runner from the headwater side. Then, pressurized
air gets blown into the runner, lowering the water surface level
to the draft tube cone. Only then does the motor-generator unit
get started up until the rotational speed of the runner reaches
the desired frequency to synchronize with the electricity grid.
Subsequently, the guide vanes and spherical valve are opened
again, and the water level rises again as the air in the runner
dissipates. The machine unit thus operates as a pump [16]. Figure
3 shows all relevant components for the start-up as a pump.

For the proof-of-concept for using RL for precise process
control, we consider the pump operation to consist of two consec-
utive control problems. First, one RL agent controls the blow-out
and start-up sequence, and then a different RL agent is trained to
operate the pump turbine to maintain a constant flow rate. This
allows for using two independent RL algorithms with different
action and state spaces. As the two processes have distinct control
objectives, training different types of RL algorithms tailored to
the specific requirements is beneficial. The flow chart in Fig. 4
illustrates the control problem formulated for the RL use case.

The control problem is designed to start with the machine
unit at stand-still, with the headwater-sided spherical valve and the
guide vanes already closed, as this step is necessary and without
any potential for improvement through applying RL. For Part A,
the start-up control process, the RL agent is set to control the
blow-out valve (i.e., to decide whether to blow air into the turbine
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FIGURE 4: Flowchart concept for controlling the operation as a pump
with RL.

runner or not) and the signal that starts ramping up the rotational
speed. Hereby, the gradient of the acceleration to the desired
frequency is fixed, and the agent can only decide at each time
step whether to start/continue ramping-up the runner’s rotation
or stay at the previous rotational speed. Part A of the pump
operation aims to minimize the start-up torque while reaching the
desired speed as fast as possible.

As soon as Part A is completed, the spherical valve is au-
tomatically opened again, leading to the refilling of the turbine
runner with water. This process is not part of the process con-
trolled with RL, as it has no optimization potential. The control
of Part B starts with the spherical valve completely open and the
runner rotating in water. The RL agent aims to find the opti-
mal combination of the runner guide vanes’ opening angle and
the turbine runner’s rotational speed. It can access both actions
simultaneously to reach the desired pumping flow rate as fast
as possible. When the desired flow rate was held for a certain
amount of time, the pump operation process is considered done,
and the control use case is considered completed.

3.2 Reinforcement Learning Implementation
For the control of the pump operation, we use RL algorithms

from the Stable-Baselines3 framework for Python [17] using Py-
Torch [18]. The connection between the agent, implemented in
Python [19], and the environment, modeled in Matlab/Simulink
using the Simscape language [20], was realized via Simulink Gym
[21], a gym interface wrapper for Simulink models. The wrapper
is based on adding TCP/IP communication between a Simulink
model running in a background instance of MATLAB/ Simulink
and a Python wrapper class implementing the Gym interface.

Part A. We used a deep Q-network (DQN) RL algorithm to
control Part A, the pump start-up process. DQN is a model-free,
off-policy RL method that uses deep neural networks (DNNs)
to approximate the optimal action-value function (Eq. 2) [22].

TABLE 1: Hyperparametersettings for the DQN Agent

Parameter Value

Learning rate 0.0001
Replay buffer size 122880
Steps before learning starts 0
Minibatch size 128
Soft update coefficient 0.8
Discount factor 1
Training frequency steps 4
Gradient steps 1
Target update interval 30000
Exploration fraction 0.4
Initial exploration rate 0.5
Final exploration rate 0.0001
Maximum gradient clipping value 10

DQN is a state-of-the-art RL off-policy algorithm recommended
for tasks with discrete actions, as it is well-established and very
sample-efficient. The DQN agent has a discrete action space with
two binary actions

𝐴𝐴 = {𝐴blow_out_valve, 𝐴speed_switch} (3)

and a continuous state space

𝑆𝐴 = {𝑆waterlevel, 𝑆rot_speed, 𝑆torque}. (4)

The reward at each training step is defined as

𝑅𝐴 = 𝑤𝐴1𝑅waterlevel+𝑤𝐴2𝑅air+𝑤𝐴3𝑅switching+𝑤𝐴4𝑅torque+𝑤𝐴5𝑅time.
(5)

The reward function has to be very carefully defined since it
controls the trade-off between fast operation and load on the
runner, which affects energy efficiency and wear. In the reward
function that we decided on, based on our expertise and many test
trainings, the agent gets a penalty 𝑅waterlevel if the water level in the
draft tube is below a critical threshold, as air could leak into the
tailwater vessel. 𝑅air accounts for the penalty the agent receives
when blowing air into the runner to minimize the air used during
the blow-out process. A penalty for switching the blow-out valve
through 𝑅switching encourages more stable operation. The agent
learns to minimize the start-up torque through the penalty 𝑅torque.
Finally, a penalty for each time step 𝑅time makes the agent reach
the desired rotational speed as fast as possible. A training episode
is finished as soon as the desired rotational speed of the turbine
runner is reached. The hyperparameters for the training of the
DQN agent are listed in Table 1.

Part B. We trained a proximal policy optimization (PPO)
algorithm to find the optimal pump operating control strategy.
The model-free, on-policy, actor-critic RL method uses multiple
epochs of stochastic gradient ascent to perform policy updates
[23]. For continuous actions, PPO is currently the prevalent
algorithm to use.

The PPO agent has a continuous action space

𝐴𝐵 = {𝐴rot_speed, 𝐴guide_vane_opening} (6)
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TABLE 2: Hyperparametersettings for the PPO Agent

Parameter Value

Learning rate 0.00001
Steps to run per update 40960
Minibatch size 128
Number of epochs 10
Discount factor 0.99
Clipping parameter 0.2
Clipping parameter for value function none
Entropy coefficient 0.3
Value function coefficient 0.5
Maximum value for gradient clipping 0.5

and a continuous state space

𝑆𝐵 = {𝑆flowrate}. (7)

The reward is calculated at each training step as

𝑅𝐵 = 𝑤𝐵𝑅time, (8)

with

𝑅time =

{︄
0, if 𝑆flowrate = �̇�target ± �̇�range

−1, otherwise.
(9)

The agent thus receives a penalty for each time step when the
flow rate is not the target flow rate �̇�target. As soon as the agent
achieves to hold the target flow rate for ten consecutive seconds,
the training episode is finished. The hyperparameters for the
training of the PPO agent are listed in Table 2.

4. RESULTS AND DISCUSSION
The DQN and the PPO agents were trained to control the

pump start-up and the pump operation processes, respectively.

4.1 Start-Up Control
The DQN agent was trained for 2217 episodes, as can be

seen in Fig. 5. Figure 5 shows the cumulative reward received
per episode over the episode number. After 2217 episodes, the
training results did not enhance anymore, and the training of the
DQN agent was terminated.

The trained agent’s control strategy is shown in Fig. 6a. The
top graph shows the blow-out action 𝐴blow_out_valve together with
the state describing the water level 𝑆waterlevel in the turbine runner
over the simulation time. The bottom graph shows the action
for starting to ramp up the rotational speed 𝐴speed_switch together
with the runner speed state 𝑆rot_speed over the simulation time.
We compare the agent’s strategy with how the start-up process
would be executed manually (i.e., how it is usually done at the
lab-scale pump turbine on which the simulation model that the
RL agent trains with is based on). Fig. 6b shows the manual
control strategy. The control policy states that air is continuously
blown into the turbine runner until the water level in the draft
tube is below a certain threshold. As soon as the water level
reaches the level where the pump turbine is considered blown-
out, the frequency of the runner gets ramped up until the desired

FIGURE 5: Training curve for Part A of the control problem for the DQN
agent. The purple line represents the average return, averaged over a
moving window of 50 episodes.

frequency with which the machine unit gets synchronized to the
grid is reached. Note that as the sense of rotation for pumping
in pump turbines is negative, the gradient for the acceleration of
the turbine runner is negative for pumping. When comparing the
graphs in Fig. 6, it becomes apparent that the DQN agent takes
some illogical actions at the beginning of the episode by switching
many times between the two binary actions. This indicates that
the agent is not fully trained yet.

Table 3 lists criteria relevant for a further assessment of the
RL agent’s performance. In total, the return achieved with the
RL agent’s policy is higher than when operated with the manual
control scheme. Compared to the episode duration of the manual
control, the DQN agent reaches the termination criterion of rotat-
ing the turbine runner at the desired speed a bit sooner, which is
visible in the episode being terminated earlier. Furthermore, the
DQN agent uses less air during the episode. However, the manual
blow-out policy reduces the start-up torque by over one percent-
age point further than the RL agent, with 100% torque rate being
the rate that would appear when the runner is not blown-out at all.
This indicates that the chosen reward function (Eq. 5) accounts
well for minimizing the amount of air used for blowing out the
runner and for shortening the time to start up as a pump. Still, it
may not account well enough for reaching the goal of minimizing
the start-up torque.

A limitation of our study is that the training of the DQN
agent to control the start-up sequence has not fully converged
yet. Nevertheless, the agent successfully learned to maximize the
reward signal and find a near-optimal solution. Finding the op-
timal hyperparameter setting for training RL algorithms is a key
challenge in RL research that we are still working on. Further
training with the same hyperparameters did not lead the agent
to converge to an optimum. Therefore, we are currently doing
extensive hyperparameter studies that take up a large amount of
computational resources. Future research will also deal with
assessing the reward function and whether it may be necessary
to adapt it to achieve better and more comparable rewards per
episode. We are confident that once the reward function is eval-
uated and the training process extended, the RL agent will find
the optimal policy for controlling the start-up sequence of the
pumping operation.
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(a) DQN agent (b) Manual control

FIGURE 6: Pump start-up control policies

TABLE 3: Comparison of simulation results for the trained DQN agent
and a manual control

DQN manual

total torque rate (% of max. torque) 2.61% 1.52%
amount of air used (% of max. air mass) 15.59% 25.05%
episode duration (% of max. duration) 99.6% 100%
total return -2197.7 -2241.2

FIGURE 7: Training curve for Part B of the control problem for the PPO
agent.

4.2 Flow rate Control
In contrast to Part A of the control problem, the RL algorithm

trained for Part B finds the optimal policy very quickly. Figure 7
shows the training progress of the PPO agent used to control the
flow rate during the pumping operation of the reversible pump
turbine. After 50 episodes of low rewards, the agent’s training
curve converges to an optimal return (i.e., the cumulative reward)
of -2.

As shown in Fig. 8, the agent’s control strategy is to stay at a
constant rotational speed and open the guide vanes until the state
describing the flow rate 𝑆flowrate is within the limits set for the
target flow rate �̇�target.

FIGURE 8: Flow rate control policy.
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Though the PPO agent sets two continuous actions, increas-
ing the complexity of an RL problem drastically compared to
discrete actions, it finds the optimal policy fast and reliable. The
optimality of the policy found can be confirmed without compar-
ing it with a manual control strategy. Therefore, we decided not
to implement a simple controller but instead focus on adapting the
problem so that the RL agent may find more interesting results.
Further research will, therefore, focus on the reproducibility of
this result and investigate if the PPO agent manages to find the
optimal policy as quickly as possible when input parameters are
changed.

5. CONCLUSION

We showed our results for training two state-of-the-art RL
algorithms, DQN and PPO, to control the operation as a pump of
a reversible pump turbine within a simulation model. We divided
the use case into two parts: the control of the pump start-up,
including the blow-out of the turbine runner, and the control of
the flow rate during the pumping operation. Both sequences are
relevant regarding optimizing the control process to increase flex-
ibility in pumped hydropower systems. Results indicate that RL
is well suited to find control strategies that outperform traditional
approaches. While training of the PPO agent, which learned to
control the flow rate during operation as a pump, converged very
quickly, we did not yet find the suitable hyperparameter settings
so that training of the DQN agent converges to the optimum.
Finding the optimal parameters requires a very high computa-
tional effort because the training has to be started again with each
new parameter setting. Depending on the computation resource
and the minimum number of training episodes until training is
considered to not improve anymore and is therefore terminated,
one training run may take up to several days of calculating. To
alleviate this issue, hyperparameter analysis and tuning, as well as
applying more high-performant algorithms such as TRPO (Trust
Region Policy Optimization) or TD3 (Twin Delayed DDPG), will
be research objects.

Admittedly, for the current problem formulation, a conven-
tional control method would still be favorable to applying RL
algorithms. However, we argue that the true optimization poten-
tial will only be apparent once the agent interacts with the actual
machine unit, where currently unknown phenomena could occur.
Once the optimal RL policies are found, we expect the agent
to quickly adapt to changes in the environment. Further, as an
RL controller can adjust to changes in drift and other influences,
observation may be facilitated and the need for maintenance is
reduced. Consequently, our future research will now focus on
assessing the reliability of the RL algorithms’ policies and then
transferring the trained learning algorithms to operate the lab-
scale pump turbine at the laboratories of TU Wien.
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