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Abstract
In this work, we calculate the effect of the binding and unbinding of molecules at the surface of a
nanowire biosensor on the signal-to-noise ratio of the sensor. We model the fluctuations induced
by association and dissociation of target molecules by a stochastic differential equation and
extend this approach to a coupled diffusion-reaction system. Where possible, analytic solutions
for the signal-to-noise ratio are given. Stochastic simulations are performed wherever closed
forms of the solutions cannot be derived. Starting from parameters obtained from experimental
data, we simulate DNA hybridization at the sensor surface for different target molecule
concentrations in order to optimize the sensor design.
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1. Introduction

Nanowire field-effect sensors have been demonstrated
experimentally for the detection of several types of biomo-
lecules in liquids [1–6]. They provide fast, efficient, and label-
free detection. In previous works, we have developed math-
ematical models for the average sensor response including the
screening of the biomolecules by free ions in the liquid and
we have quantified these effects in simulation studies of
nanowire biosensors [7–12] as well as nanowire gas sen-
sors [13].

In this work, we model and simulate fluctuations and
noise due to binding and unbinding events at the surface of a
nanowire biosensor. Since the random nature of DNA
hybridization, i.e., random motion and random interaction,
causes so-called biological noise [14–18], we consider these
reactions as stochastic processes allowing quantification of
the noise induced during detection. Moreover, we take into
account that the number of target molecules in the liquid is
limited and therefore couple the equations of DNA hybridi-
zation with a diffusion equation in the liquid phase.

When investigating the coupled system, there are in
principle three regimes to consider.

• Probe-target binding is much faster than diffusion: here,
one should consider deterministic equations for the
chemical reactions coupled with a stochastic diffusion
equation. The effect of the coupling only enters through a
boundary condition for the diffusion equation.

• Diffusion is much faster than probe-target binding: this is
the opposite case, where the sensor is limited by
diffusion.

• Both processes occur at comparable speeds: now the
whole system must be considered in a coupled stochastic
formulation. A parameter estimation for the chemical
reactions shows that this is indeed the case in the
nanowire sensors of interest (see section 4.1 below). We
will focus on this case throughout this study.

To obtain quantitative results, we rely on experimental
data from [19], where the effect of probe density at the
nanowire surface was investigated. We estimate reaction
parameters from those results and use them for stochastic
simulations.
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The paper is organized as follows: in section 2, the
deterministic reaction model without diffusion is described
and extended to a stochastic version. Expected value, var-
iance, and signal-to-noise ratio (SNR) are given in explicit
form. In section 3, we couple the system to a diffusion
equation and describe the algorithm used in the simulation.
We present numerical results in section 4 and discuss them in
section 5.

2. The binding model

We consider the surface of a nanowire sensor which is
functionalized with probe molecules and surrounded by an
aqueous solution containing the target molecules. Probe-tar-
get binding, or DNA hybridization in particular, is then
described by association and dissociation processes taking
place at the sensor surface. The reactions considered are

+ ⟶ aT P PT, (1 )
ra

⟶ + bPT T P, (1 )
rd

where T denotes a target molecule, P denotes a probe
molecule and PT denotes a probe-target complex at the sensor
surface and ra and rd are reaction constants, namely the
association and the dissociation constants.

2.1. A deterministic approach

To gain first insights into the system, we consider large
enough amounts of target as well as probe molecules such
that random effects are negligible. With these approximations,
the reactions then correspond to an ordinary differential
equation (ODE) by application of the mass action law,
yielding

= − −( )
t

t r C C t r t a
PT

PT PT
d
d

( ) ( ) ( ), (2 )a T P d

= bPT(0) 0, (2 )

where CT and CP are the concentrations of target molecules in
the liquid near the surface and probe molecules at the surface,
respectively. The initial condition indicates that there are no
probe-target complexes present at the surface in the begin-
ning. From this equation, the concentration of PT complexes
at the surface can be computed for any time.

Under the (simplifying) assumption of constant target-
molecule concentration, this ODE can be solved in a
straightforward manner, yielding

α
β

= + −

= − β

− +

−

( )
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t
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r C r
PT( ) · 1 e

· 1 e , (3)
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t

a P T

a T d

a T d

where we used the abbreviations

α = r C C: , (4)a P T

β = +r C r: . (5)a T d

If, however, the concentrations of the target molecules vary,
the situation is not as simple and will be considered below.

2.2. Stochastic formulation

The deterministic approach discussed in the previous section
is a convenient method in case there is a sufficiently large
number of molecules taking part in the association–dissocia-
tion or hybridization processes. However, since we are
interested in detection limits, it is essential to consider cases
when only a few molecules are present in the system. This
requires a more detailed approach taking into account that the
association and dissociation processes occur in a stochastic
manner. Therefore, we model both reactions at the surface as
stochastic processes. This approach yields a chemical Lan-
gevin equation [20].

The number PT of probe-target complexes now becomes
a random variable and we will write Xt for this quantity in the
following. Denoting the number of associations
(respectively dissociations) within a time interval τ by the
random variable  τX( , )a t (respectively τX( , )d t ), we can
write a difference equation for Xt as

 τ τ− = −τ+ ( ) ( )X X X X, , . (6)t t a t d t

The number of reactions taking place is a counting process.
Therefore, both random variables obey a Poisson distribution
with parameters

τ τ= −( ) ( )a X r C C X, , (7)t ta T P

τ τ=( )d X r X, . (8)t td

Here τa X( , )t is the parameter of the Poisson process a

describing association and τd X( , )t is the parameter of d

describing dissociation. τa X( , )t is proportional to the time
interval τ, to the association rate ra, to the number CT of target
molecules available for binding, and to the number −C XP t

of available binding sites; τd X( , )t is proportional to the time
interval τ, to the dissociation rate rd, and to the number Xt of
bound target molecules. This is analog to (2a) above.

If we consider the time interval τ to be large enough so
that many reactions occur within it [21], we can approximate
the Poisson distributed random variables by normal dis-
tributed random variables with the same mean and variance.
Therefore, we find

 τ τ τ= +( ) ( ) ( )X a X a X, , , (0, 1), (9)a t t t

 τ τ τ= +( ) ( ) ( )X d X d X, , , (0, 1). (10)d t t t

Hence, equation (6) becomes a Langevin equation in white-
noise form

= − −
+ − −

=
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( )
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where Bd 1 and Bd 2 are two independent Wiener processes.
We are interested in the statistics of the random variable Xt

and therefore we calculate the first and the second moment.
Again, the situation is much more complicated if the

target concentration is not constant. For example, it is only
possible to obtain explicit expressions under the assumption
of constant target concentration, which is assumed to hold in
the rest of this section. Varying target concentrations will be
considered in section 3.

2.3. Calculation of the first moment

To calculate the first moment, we simply apply the expec-
tancy to equation (11) to find

  

  

( ( (

(

(

= − −
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−
=
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simplifying to

(
( (= − −( )( ) ( ) ( )

X

t
r C C X r X

d

d
. (13)

t
t ta T P d

This is the same equation as (2a), but now for ( X( )t , and
hence the solution is

(
α
β= = − β−( )( )E t X( ) : 1 e (14)t

t

for the initial condition ( =X( ) 0t . This justifies the use of the
deterministic equation for the parameter estimation in
section 4.1.

2.4. Calculation of the second moment

The calculation of the second moment is more involved. First,
we define the random variable =Y X:t t

2. Applying Itōʼs for-
mula to Yt gives

= +Y X X X Xd 2 d d d . (15)t t t t t

Substituting for Xd t and using δ=B B td d di j ij as well as
=t td d 0 and =t Bd d 0i , we obtain
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Applying the expectancy, we obtain
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and furthermore
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The solution of this equation with the initial condition
( =X( ) 0t

2 is given by
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Therefore, the variance of Xt is given by
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An alternative derivation starts from the binding prob-
ability

α
β= = − β−( )p t

E t
C C

( ) :
( )

1 e ,t

P P

so that we find

9
α
β

= − = − +β β− −( )( )( )X C p t p t r r C( )(1 ( )) 1 e et
t t

P 2 d a T

for the variance 9 X( )t after a calculation assuming binomial
statistics. This is the same as (20).

2.5. The SNR

One of the most important characteristics of a sensor is its
signal-to-noise ratio (SNR). This quantity measures the
quality of a signal and also determines the threshold of dis-
tinguishing it from background noise data. While the signal is
related to the expected value, the noise is related to the

3
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variance. Hence the SNR is defined as the ratio

(

9
= ( )

( )
t

X

X
SNR( ) : (21)

t

t

of expected value and standard deviation of the random
variable. This ratio is a dimensionless value. Using the above
calculations, we find

(

9
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= −
− +
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β β

−
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. (22)

t

t

t

t t
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Note that the SNR has a finite value as → ∞t namely

=
→∞

t
C C r

r
limSNR( ) , (23)
t

P T a

d

which is easily interpreted when the SNR is to be maximized.

3. The coupled model

When modeling realistic sensors, it is not sufficient to think of
the target molecules near the surface as a reservoir, i.e.,
having a constant concentration. The diffusion of the target
molecules in the aqueous solution surrounding the sensor
must be included. Diffusion will slow down the binding of
target molecules at the sensor surface, because after an initial
phase the target molecules deplete near the surface and their
diffusion to the sensor surface requires time. (This effect will
be observed numerically in section 4.)

From the modeling point of view, the coefficient
=C C t( )T T is now a time-dependent function and can be

obtained from the solution of the diffusion equation

Δ Ω∂
∂ = ×u
t

D u T ain (0, ], (24 )

ν Ω= ∂ ×�u g T b· on (0, ] (24 )

Ω=u x u c( , 0) in . (24 )0

In fact, CT(t) is the mean value of u near the surface.
Here, u x t( , ) is the concentration of the target molecules. The
function g at the Neumann boundary represents the fact that
the number of molecules decreases at the surface according to
the association–dissociation process, while at the rest of the
boundary, there is no flow.

The parameter D is the diffusion constant of the target
molecules. In the case of single-stranded DNA oligomers,
which are modeled as rods, its numerical value is obtained via

πη= = × − −D
Ak T

L3
8.8775 10 m s , (25)B

DNA

11 2 1

where η is the liquid viscosity, which is determined depend-
ing on salt concentration and temperature, LDNA is the length
of the DNA oligomers, and A is a correction factor according

to [22]. The numerical values of these parameters are given in
table 1.

Another approach to model the diffusion constant of
single-stranded DNA oligomers is to use the persistence
length. In [23, page F] it is assumed to be between 0.6 nm and
1.3 nm depending on the ionic strength of the solution. Using
these values, the diffusion constant is between

× ×− − − −3.45 10 m s and 1.72 10 m s10 2 1 10 2 1, respectively.
Since the persistence length of ssDNA oligomers is still
controversial [23], the value of D in (25) is used in the
following.

The simulations below can be performed for any number
of spatial dimensions in (24a)–(24c). Because of the usual
geometry of the analyte compartment above a nanowire
transducer, it suffices to consider the one-dimensional case,
where the axis is perpendicular to the sensor surface, in order
to capture the dynamics of particles diffusing towards the
sensor surface, and this is the case investigated in the fol-
lowing (see also figure 1). Extensions to higher dimensions
are straightforward.

This initial-value problem has to be coupled with the
association–dissociation process modeled in section 2. The
quantity that enters the stochastic differential equation is the
target-molecule concentration in the surface region, which
can generally not be obtained in explicit form. Therefore, the
solution of stochastic differential equation for the association–
dissociation process can generally not be obtained in explicit
form as well, and hence numerical investigations are
necessary.

Figure 1. Sketch of the domain. The Y-shaped objects are the probe
molecules and the red diamonds represent the target molecules. The
whole domain is partioned in several boxes according to the
simulation algorithm described in section 3.1.
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As will turn out after the estimation of the association
and dissociation constants, the speed of diffusion is of com-
parable size, and therefore we also have to consider a sto-
chastic version of the diffusion equation.

3.1. Stochastic simulation

The numerical simulation of the stochastic reaction-diffusion
processes investigated here is performed according to the
algorithm described in [25]. The problem can be reduced to
only one spatial dimension. We divide the domain of the
aqueous solution into a certain number of boxes, where dif-
fusion is represented as the transition of molecules between
two adjacent compartments. A sketch of the domain is shown
in figure 1. Target binding is modeled by adding another
(virtual) box, where only transitions to and from the com-
partment representing the surface layer can occur.

The algorithm consists of the following steps:

(i) Choose the time interval τ randomly according to the
reaction constants, the diffusion constant, and the number
of particles in the respective compartments.

(ii) Choose the two involved boxes for the transition
occurring during the time interval τ as random numbers.

(iii) Update the number of particles in the respective boxes.
(iv) Unless the total simulation time is reached, go to step 1.

For the surface boxes, the transition probabilites are
proportional to the reaction rates of the association-diffusion
process and to the number of particles, whereas for the rest of
the boxes, the transition probability is proportional to the
diffusion constant and the number of particles.

To obtain the statistics for the probe-target complexes,
the algorithm must be repeated many times in order to cal-
culate the mean value and the variance and hence the SNR at
each time. This procedure allows easy parallelization during
computation, since every run is independent of the others.

4. Numerical results

In this section, simulation results of realistic field-effect
sensors are presented. We consider DNA sensors, because
they are important in applications and have been studied well
experimentally. Of course, the models from the previous
sections can be applied to any pairs of probe and target
molecules.

4.1. Determining the reaction rates for DNA hybridization

To perform simulations of nanowire sensors according to the
models discussed in the previous sections, it is necessary to
find numerical values for the parameters ra and rd first. These
can be obtained using a least-squares optimization with
respect to experimental measurements. We used data reported
in [19], where the hybridization kinetics of ssDNA under
different probe densities was investigated. By comparing the
calculated solutions for the deterministic reaction kinetics to
the data, we determined the parameters of interest, which will
then be used for simulations throughout this study. The
numerical values are shown in table 2. A graphical repre-
sentation is given in figure 2. The agreement between the
experimental data and the calculated curves is shown in
figure 3.

The numerical values of the association rate ra clearly
reflect the decrease of the association rates with increased
probe density, which is due to to electrostatic repulsion.
Analogously, the dissociation rates rd are hardly affected by
the probe density.

4.2. SNR in the case of constant target concentration

Having determined the reaction rates, we can compute the
SNR in the case of constant target concentration according to
equation (22). The results are shown in figure 4.

It turns out—quite surprisingly—that the SNR is higher
when the probe-molecule density is lower. However, this fact
is also represented by the formula given in (23).

4.3. SNR in the coupled model

In order to study the effect of diffusion on the target-molecule
concentration, we calculate the statistics for the whole system
with the same parameters as used in the previous section. The
concentrations of probe-target complexes at the surface cal-
culated by the pure reaction model and by the diffusion-
reaction system differ as shown in figure 5. This motivates
further investigations of the coupled diffusion-reaction system
below.

4.4. Different target concentrations and optimal sensor surface
design

To optimize sensor design, we now investigate the optimal
probe-molecule density for a given target molecule con-
centration. This knowledge is important to determine the
detection limit and to design the most effective sensor for the

Table 1. Parameters used for the computation of the diffusion constant.

Parameter Numerical value Comment Reference

A 2.074 correction factor [22]
kB × − −1.380 65 10 J K23 1 Boltzmann constant —

T 298.15 K temperature in Kelvin [19]
η × − −9.719 10 N s m4 2 viscosity [24]
LDNA 10.5 nm length of molecules [19]

5
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target-molecule concentration regime of interest. To this end,
a set of simulations with different parameter values was car-
ried out. The concentrations of used target-molecules range
from 1 nM to μ270 M.

There are two different quantities of interest when ana-
lyzing the results. On the one hand, the binding efficiency is
the ratio of hybridized complexes at the surface to the total
number of probe molecules. On the other hand, the surface-
charge density is proportional to the total number of hybri-
dized complexes per surface area.

The necessity of considering the surface-charge density
over binding efficiency becomes clear when investigating
very low target and probe concentrations: in this case, the
binding efficiency may be large, but the hybridized com-
plexes barely influence the sensor signal since the surface-
charge density is barely changed so that the absolute signal is
small. On the other hand, since the relative change in binding
efficiency may be considerable, it leads to a considerable

Table 2. Reaction parameters for DNA hybridization. The very left
column gives the different probe densities.

molecules cm-2 association rate ra dissociation rate rd

2 × 1012 3933 0.0016
3 × 1012 4071 0.0042

×5.2 1012 1014 0.0019
×9.5 1012 861 0.0037

12 × 1012 348 0.0027

Figure 2. Reaction parameters versus probe-molecule density. For
higher probe densities, the association rate decreases significantly.

Figure 3. Experimental data from [19] (points) and simulated curves
with the calculated parameters (lines). The parameters reflect the
decreasing binding efficiency with increasing probe density.

Figure 4. SNR for different probe-molecule concentrations.

Figure 5. Comparison of solutions of the reaction model and the
reaction-diffusion system. The differences are significant.

6
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change in the sensor signal, so that detection may be possible
even if the binding efficiency is very low.

As can be seen in figure 6, the binding efficiency attains a
perfect value of (nearly) 100% when the target molecule
concentration is large enough. The threshold value for this
situation becomes larger with increasing probe density. For
low target-molecule concentrations, the binding efficiencies
differ by constant values for a given target-molecule
concentration.

The situation is quite different when considering the
surface-charge density. The simulation results are shown in
figure 7. For low target concentrations, lower probe densities
yield higher surface-charge densities, while for higher target-
molecule concentrations, it is the other way round. The
inversion of the optimal probe density happens at around

μ1 M target-molecule concentration. This is an important
observation, since it means that the probe density is an
important design parameter that must be adjusted to the tar-
get-molecule concentrations of interest in order to get optimal
sensor responses.

Considering the equilibrium state at the surface, one can
see in figure 8 that the variance decreases with increasing
target-molecule concentration above a certain threshold value.
Since the signal is also higher at higher concentrations, target
concentration in this region are advantageous; the corre-
sponding SNR is shown in figure 9.

In these numerical simulations, the case of DNA probes
and DNA target molecules has been investigated in depth,
since this type of sensor is of great practical significance. Of
course, the actual numerical results will be different for other
combinations of probe and target molecules, e.g., for PNA
probes and DNA targets or antibody probes and antigen

targets, depending on their charges and association and dis-
sociation constants.

4.5. Different initial conditions

Finally: we investigate how mixing of the aqueous solution
affects sensor performance. This question was investigated
experimentally in [3]. We consider two different initial con-
ditions here. In the first case, the liquid has been mixed
perfectly and the initial concentration of the target molecules

Figure 6. Binding efficiency as a function of target-molecule
concentration. The different curves represent different probe
densities at the surface (numerical values indicated in the legend). At
sufficiently high concentrations, all the probe molecules are
hybridized.

Figure 7. Equilibrium PT density depending on target-molecule
concentration. Inversion of the optimal probe density occurs around

μ1 M.

Figure 8. Standard deviation of the number of PT complexes at the
surface with respect to the target concentration. At high concentra-
tions, the value decreases since almost all probe molecules are
hybridized.

7
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is uniform. In the second case, the target molecules enter the
liquid from above. As a consequence, the target molecules are
initially present only in the uppermost box of the simulation
domain. Therefore it takes time until any molecules reach the
sensor surface and are detected.

Here we calculate the expected time until 80% of the
equilibrium surface-charge density are reached. Of course,
this time decreases with increasing target molecule con-
centration. However, this effect is larger when there is an
initially uniform concentration of the target molecules

throughout the liquid as shown in figure 10. These simulation
results mean that mixing of the liquid is essential for fast
detection.

5. Conclusions

We have derived explicit expressions for the expected value,
the variance, and the SNR of target molecules at the surface
of affinity based sensors for the case where the concentration
of target molecules in the liquid is constant. These results
answer the question of biological or association–dissociation
noise in these sensors. For the more general case of diffusive
transport of target molecules, we have implemented and
performed stochastic simulations of the coupled reaction-
diffusion system to investigate several features of the signal
and SNR of nanowire sensors.

The main model system for the biological detection
mechanism is hybridization of DNA at a charged surface. We
considered various probe densities as well as different target-
molecule concentrations. We determined association and
dissociation rate constants. They reflect the fact that a higher
probe density causes electrostatic-repulsion effects decreasing
the binding efficiency. This effect arises in a probe-density
range between 3 and × −5.2 10 molecules cm12 2.

A remarkable feature of such field-effect sensors is that
even if the binding efficiency is lower for a certain probe-
target concentration pairing, the surface-charge density can be
larger and therefore result in better detection by a field-effect
sensor. This inversion effect is shown in the simulations
results.

In summary, we have discussed the features of the
optimal biological detection mechanism within nanowire
biosensors and shown how design parameters interrelate and
can be optimized.
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