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Abstract: This work deals with the stochastic simulation of a nanowire biosensor surface
and the surrounding liquid domain for DNA detection. The objective is an analysis of the
fluctuations and of the biological noise induced by the inherent randomness of the hybridization
process at the surface. We consider a coupled system of diffusion-reaction equations to model
the movement of DNA oligomers as well as the hybridization processes at the functionalized
surface of the sensor. Since analytical solutions cannot be derived, numerical investigation is
necessary. Here, we present an algorithm different from the already published one in Tulzer and
Heitzinger (2014) and show the non-monotonic behaviour of the variance in certain regimes.
The variance determines the detection limit, which is an important quantity for optimal sensor
design.
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1. INTRODUCTION

The applicability of nanowire field-effect sensors for the de-
tection of several types of biomolecules in liquids has been
shown experimentally, assuring fast, efficient and label-free
detection (Zheng et al., 2005; Patolsky et al., 2006; Stern
et al., 2007, 2010; Hunt and Armani, 2010; Duan et al.,
2012). However, the optimal design of the sensor is still
a main topic of research. We have developed mathemati-
cal models for the average sensor response (Baumgartner
et al., 2011b,a; Baumgartner and Heitzinger, 2012; Baum-
gartner et al., 2012, 2013) and for the surface processes
at biosensors (Bulyha and Heitzinger, 2011) as well as for
gassensors (Tulzer et al., 2013), which provided insights
into the rational design of the sensors.

The hybridization and dissociation processes taking place
at a nanowire biosensor surface give rise to biological
noise (Hassibi et al., 2004, 2005, 2007; Das et al., 2009;
Deen et al., 2006) and should therefore be considered as
stochastic processes to take into account their random
nature. These equations are coupled to a diffusion equation
in the liquid phase surrounding the surface to model the
limited transport of DNA oligomers in the liquid phase.
This coupled model also reflects the small amount of
target molecules present in the simulation domain. Since
hybridization and diffusion occur at the same timescale,
the whole system is considered in a stochastic formulation.

Recently, we followed a box approach to realize the cou-
pled system of equations, which allowed the prediction
of several important quantities like signal-to-noise ratio
and response time (Tulzer and Heitzinger, 2014). Here, we
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employ a random walk approach to simulate the system,
which turns out to be computationally more efficient.

The paper is organized as follows: In Section 2, the
hybridization model is described, and some analytical
results for simplified cases are given. In Section 3, the
coupling of the diffusion equation to the hybridization is
explained. The algorithm implemented for the simulations
is considered in Section 4, and numerical results are
presented in Section 5.

2. THE HYBRIDIZATION MODEL

We consider the hybridization of DNA on a nanowire sen-
sor surface. The latter has been functionalized with probe
molecules. The hybridization and dissociation processes at
the surface considered in this study are

T+P
ra−→PT, (1)

PT
rd−→T+P, (2)

where T denotes a target molecule, P denotes a probe
molecule and PT denotes a probe-target complex at the
sensor surface and ra and rd are the hybridization and the
dissociation rate, respectively. Numerical values for these
quantities have been estimated in (Tulzer and Heitzinger,
2014) for different probe densities, which will be used for
simulations in this work.

Assuming large but constant amounts of target as well as
probe molecules and also considering a reservoir of target
molecules, the processes stated above are described by an
ordinary differential equation,



dPT

dt
(t) = raCT (CP −PT(t))− rdPT(t) (3)

PT(0) = 0, (4)

where CT and CP are the concentrations of the target and
probe molecules, respectively. This differential equation
can easily be solved analytically assuming that CT is
constant.

However, when dealing with nanostructures, one is in-
terested in small amounts of particles, in which case it
is inappropriate to neglect the random character of the
investigated processes. We model both surface reactions as
stochastic processes, which is an approach yielding a chem-
ical Langevin equation for the system (Gillespie, 2008).
The number PT of probe-target complexes then becomes
a random variable. The number of reactions taking place
in a time interval τ is a counting process and therefore
obeys Poisson distributions with the parameters

a(PTt, τ) = τraCT (CP −PTt) (5)

d(PTt, τ) = τrdPTt (6)

for the association and the dissociation process, respec-
tively. However, when considering large enough time in-
tervals τ , the Poisson distribution can be approximated
by a normal distribution with the same mean and variance
(Higham, 2008).

With this, the chemical Langevin equation in white-noise
form becomes

dPTt = (raCT (CP −PTt)− rdPTt) dt

+
√

raCT (CP −PTt) dB1 −
√

rdPTt dB2, (7)

PT0 = 0,

where dB1 and dB2 are two independent Wiener pro-
cesses.

Under the simplifying assumption of constant amounts
of target molecules throughout the liquid, the expected
value and the variance are calculated from the Langevin
equation as

E(PTt) =
α

β

(

1− e−βt
)

, (8)

V(PTt) =
α

β2
(1− e−βt)(rd + raCT e

−βt), (9)

where α := raCPCT and β := raCT + rd (Tulzer and
Heitzinger, 2014).

3. THE COUPLED MODEL

When considering nanostructures, the modeling of the
target molecule density to be constant is not very accurate.
In fact, it is more reasonable to consider the number
of target molecules to be limited and to consider them
as particles diffusing through the liquid domain. The
concentration of target molecules u(x, t) throughout the
liquid is governed by the diffusion equation

Fig. 1. Sketch of the domain. The Y-shaped objects are
the probe molecules and the red diamonds represent
the target molecules. The whole domain is partioned
in several boxes according to the simulation algorithm
described in the text.

∂u

∂t
= D∆u in Ω× (0,T], (10)

ν · ∇u = g on ∂Ω× (0,T], (11)

u(x, 0) = u0 in Ω. (12)

The function g models the hybridization at the sensor
surface as well as homogeneous Neumann conditions at
all the other boundaries. Now, CT (t) := u(∂Ωs, t) is the
mean concentration at the surface. Here, we are only
considering a 1D domain, because diffusion in all directions
parallel to the surface has no influence on the outcome
of the simulation. This is due to the fact that we are
considering a uniform surface, so that adsorption is equally
likely everywhere. As in Tulzer and Heitzinger (2014), the
diffusion constant is chosen to be D = 8.8775 ·10−11m2/s.

The coupling with the hybridization-diffusion process is
achieved via the boundary condition at the sensor surface.

3.1 Signal-to-Noise ratio

The signal-to-noise ratio is an important quantity in sensor
design, since it is a measure for the quality of a signal and
determines the treshold for distinguishing it from noise.
Its value is given by

SNR(t) :=
E(Xt)

√

V(Xt)
. (13)

This ratio is a dimensionless value.

Of course, a high signal-to-noise ratio is always desired.

4. ALGORITHM

In Tulzer and Heitzinger (2014), we employed a box tran-
sition algorithm for the diffusion to simulate the coupled
system of equations. Here, we present an algorithm based
on random walks, which was proposed in Erban et al.
(2007). In every step, the particles are moved randomly



according to their diffusion constant. Moreover, for every
particle near the surface a random number decides whether
the target molecule binds to the surface. Also, for every
probe-target complex, a random number decides whether
the hybridized complex dissociates. Summarizing, the al-
gorithm is the following:

(1) Place target molecules in the box according to the
desired initial condition.

(2) Move every particle in the domain according to

Xi(t+∆t) = Xi(t) +
√
2D∆tξ, (14)

where ξ is a random number drawn from a Gaussian
distribution. Use reflective boundary conditions for
the molecules that would otherwise move outside the
box.

(3) For every target molecule near the surface, draw a
random number η from a uniform distribution and
consider the respective particle hybridized if

η ≤ raCT (t) (CP −PT(t))∆t, (15)

where CT here denotes the concentration of target
molecules near the surface.

(4) For every hybridized complex, draw a random number
ζ from a uniform distribution. If

ζ ≤ rdPT(t)∆t, (16)

consider the complex dissociated and insert a particle
in the liquid near the surface.

(5) Unless final time tend is reached, go to step (2).

To obtain the statistics for surface hybridization, the
algorithm needs to be repeated many times in order
to calculate the necessary moments. Parallelization is
straightforward, since every run is independent of all the
others. Therefore, one can distribute the total amount
of evaluations onto several cores, which can be easily
implemented in MATLAB by using the parfor command
instead of the usual for command.

One important reason to employ the random walk ap-
proach is the savings in computational effort. Moreover,
another favorable aspect for the random-walk algorithm is
its simple extendability to higher dimensions, which would
have been quite awkward in the box-based approach.

5. NUMERICAL RESULTS

The simulations were performed for 2 × 1012 probe
molecules per cm2, for which the surface reaction rates
have been determined in Tulzer and Heitzinger (2014).

5.1 Comparison to the Box-Based Algorithm

First, we show the equivalency to the box-based algorithm.
We performed a simulations with a 1 µM solution of target
molecules in the liquid. The comparison of the mean value
and the variance is shown in Figure 2. The agreement of
both simulations validates the random-walk approach.

As mentioned, this algorithm is favorable due to the sav-
ings in computation time. In our experiments, the random-
walk based algorithm was approximately five times faster
than the box-based algorithm. Since parallelization only
means that we distribute the single evaluations on several
cores, this result is independent of the number of cores we
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Fig. 2. Comparison of the results of the two different
algorithms. The green line represents the random-
walk-based algorithm, while the blue line represents
the box-based algorithm. The main frame shows the
mean value, while the inset shows the variance.
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Fig. 3. Evolution of the variance for different target
molecule densities, given in µM . At higher target
molecule densities, the variance is not monotone and
shows a maximum after a certain period of time de-
pending on the concentration.

are using, as long as we use the same number for both
algorithms.

5.2 Behaviour of the Variance

The variance of the PT-density is zero at t = 0 by defini-
tion of the initial conditions of the system. Its evolution
over time shows some very interesting properties in certain
regimes, where one encounters a significant maximum after
a certain period of time and the final equilibrium is reached
at a lower value. The exact shape for different target
molecule densities can be seen in Figure 3. This phe-
nomenon arises at higher target molecule concentrations
and breaks down at approximately 0.5µM . To the best of
our knowledge, this effect has not been reported in the
literature so far.
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Fig. 4. Blue curve: Time until maximum in Variance is
reached (left y-axis). Green curve: Percent of maxi-
mum mean value when the maximum in variance is
reached (right y-axis).

In the non-monotonic cases the period of time until the
maximum is reached varies with target molecule density.
Also, the mean value percentage at the variance maximum
(with respect to the final value) decreases with target
molecule concentration. This means that the waiting time
for the best signal-to-noise ratio increases with increasing
target molecule density, since after the variance maximum
is reached, the signal still increases and the variance will
decrease. Both values are shown in Figure 4.

6. CONCLUSIONS

We presented a random-walk based algorithm for the sim-
ulation of coupled system of diffusion reaction equations
to model the hybridization kinetics at nanowire biosensor
surfaces. Its favorable features are speed and easy extend-
ability to higher dimensions. For example, more realistic
geometries as well as more complicated initial conditions
could be implemented to further increase the applicability
of the simulations.

We also showed that the biological noise evolution is not
monotone in certain regimes, which is an important fact
regarding the optimal sensor design, since the signal-to-
noise ratio depends heavily on the noise. Therefore, this
kind of simulations makes it possible to determine the
optimal device parameters, including the probe density,
for each use case. This enables rational design of this type
of biosensors.
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