
Citation: Jalaeian Zaferani, E.;

Teshnehlab, M.; Khodadadian, A.;

Heitzinger, C.; Vali, M.; Noii, N.;

Wick, T. Hyper-Parameter

Optimization of Stacked Asymmetric

Auto-Encoders for Automatic

Personality Traits Perception. Sensors

2022, 22, 6206. https://doi.org/

10.3390/s22166206

Academic Editor: Jing Tian

Received: 17 July 2022

Accepted: 16 August 2022

Published: 18 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Hyper-Parameter Optimization of Stacked Asymmetric
Auto-Encoders for Automatic Personality Traits Perception
Effat Jalaeian Zaferani 1, Mohammad Teshnehlab 1, Amirreza Khodadadian 2,* , Clemens Heitzinger 3,4,
Mansour Vali 1, Nima Noii 5 and Thomas Wick 2

1 Electrical & Computer Engineering Faculty, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
2 Institute of Applied Mathematics, Leibniz University of Hannover, 30167 Hannover, Germany
3 Institute of Analysis and Scientific Computing, TU Wien, 1040 Vienna, Austria
4 Center for Artificial Intelligence and Machine Learning (CAIML), TU Wien, 1040 Vienna, Austria
5 Institute of Continuum Mechanics, Leibniz University of Hannover, 30823 Garbsen, Germany
* Correspondence: khodadadian@ifam.uni-hannover.de

Abstract: In this work, a method for automatic hyper-parameter tuning of the stacked asymmetric
auto-encoder is proposed. In previous work, the deep learning ability to extract personality perception
from speech was shown, but hyper-parameter tuning was attained by trial-and-error, which is time-
consuming and requires machine learning knowledge. Therefore, obtaining hyper-parameter values
is challenging and places limits on deep learning usage. To address this challenge, researchers have
applied optimization methods. Although there were successes, the search space is very large due to
the large number of deep learning hyper-parameters, which increases the probability of getting stuck
in local optima. Researchers have also focused on improving global optimization methods. In this
regard, we suggest a novel global optimization method based on the cultural algorithm, multi-island
and the concept of parallelism to search this large space smartly. At first, we evaluated our method
on three well-known optimization benchmarks and compared the results with recently published
papers. Results indicate that the convergence of the proposed method speeds up due to the ability
to escape from local optima, and the precision of the results improves dramatically. Afterward, we
applied our method to optimize five hyper-parameters of an asymmetric auto-encoder for automatic
personality perception. Since inappropriate hyper-parameters lead the network to over-fitting and
under-fitting, we used a novel cost function to prevent over-fitting and under-fitting. As observed,
the unweighted average recall (accuracy) was improved by 6.52% (9.54%) compared to our previous
work and had remarkable outcomes compared to other published personality perception works.

Keywords: big five personality traits; cultural algorithm; deep learning; hyper-parameter optimization;
personality perception

1. Introduction

Whether deep or shallow, the operation of artificial neural networks (ANNs) depends
on their hyper-parameters and parameters [1–3]. Certain variables of ANNs are called
hyper-parameters, such as the number of layers [2], or control the training process, such as
the learning rate [4]. In contrast, the trainable variables pertaining to layer connections and
tuned during the training process, which are weights and biases, are called parameters [5–7].
Although parameter tuning may yield good results, it does not yield notable results without
hyper-parameter tuning (HPT).

The importance of HPT became more manifest than before with the development of
deep learning algorithms. Deep learning is a type of machine learning (ML) technique
with diverse hyper-parameters that severely affect its performance [8–10]. Since HPT is
an arduous task and requires data and network knowledge [11,12], it is often acquired
by empirical methods (trial-and-error), which is time-consuming and does not guarantee

Sensors 2022, 22, 6206. https://doi.org/10.3390/s22166206 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166206
https://doi.org/10.3390/s22166206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2374-0557
https://orcid.org/0000-0002-1102-6332
https://doi.org/10.3390/s22166206
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166206?type=check_update&version=2

Sensors 2022, 22, 6206 2 of 22

significant results in terms of efficient algorithms and overall cost complexity. Therefore,
studies based on applying optimization methods to ANNs have gained attention.

Accordingly, the usage of optimization algorithms is divided into three groups, as follows:

1. HPT with the classical method and parameter optimization [13–16]: The fine-tuning
of weights and biases (parameters) can provide useful information about the problem,
but their size and initial value rely on HPT. Moreover, the number of parameters in
deep neural networks (DNNs) and high dimensional datasets is enormous, and calcu-
lating the optimum value of these parameters is complicated, not easily implemented,
and requires computational systems with remarkable capabilities.

2. Hyper-parameter and parameter optimization [17–19]: Adaptive hyper-parameters
are obtained by parameter training. The critical disadvantage is that with each possible
vector of hyper-parameters, the parameters must be optimized, which causes runtime
errors in the computational system and requires expensive training and large storage
capacity to save the best parameters value over epochs. Additionally, all possible
combinations of hyper-parameters are computationally infeasible. Hence, this method
is not applicable in a large model such as deep learning [20,21].

3. Hyper-parameter optimization (HPO) and parameter tuning with back-
propagation [4,11,22]: The main drawback is that although optimization methods are
efficient in finding global optima, the gradient may vanish when back-propagating.
As a result, not all network parameters are tuned well, which impacts results [23]. To
tackle the poor-tuning process of deep neural network parameters, an asymmetric
auto-encoder (AsyAE) was presented in our previous work for automatic personality
perception (APP) from speech [24]. We showed that AsyAE could improve the model
outcome results compared with conventional auto-encoders by semi-supervised train-
ing of parameters, and it can be effectively employed in deep learning. However, the
stacked asymmetric auto-encoder (SAAE) hyper-parameters were chosen by trial-and-
error, which was time-consuming, and two personality traits achieved lower accuracy
than other prior research [24].

Thus, the aims of the present work were to (1) propose a novel optimization method
based on cultural evolution and parallel computing, (2) obtain the near-optimal values of
hyper-parameters of SAAE, and (3) classify five personality traits.

The rest of the article is organized as follows. In Section 2, some related works of HPO
in deep learning and APP are explained. In Section 3, the dataset is introduced, and the
summary of the feature extraction method is presented in Section 4. The new optimization
method is proposed in Section 5. The simulation results of the new method, which is
applied to three benchmark functions of finding global optima, are presented in Section 6.
In addition, this section discusses the outcomes of applying the proposed method to SAAE
for automatic personality perception classification.

2. Related Works

Given that this article examines HPO methods in order to find a proper one to optimize
the hyper-parameters of SAAE for automatic personality trait perception, the related works
section is divided into two parts. The focus of the first part is on recently published methods
of neural network hyper-parameter tuning, regardless of the application in which it is used.
Thus, the works related to the investigation of HPO in ML are summarized in the first
part. Since the aim of our research was HPT of SAAE to classify five personality traits from
speech, the second part is related to studying HPO in machine learning methods applied in
the field of personality trait perception.

2.1. Hyper-Parameter Tuning in ML

Deep learning hyper-parameter types are vast and can be divided into three groups:
integer, real, and categorical. The integer group consists of variables such as the number of
layers (whether hidden or convolutional) [25], the number of neurons [8], the size of the
kernel [26], the number of kernels [27], batch size, pooling size, and number of maximum

Sensors 2022, 22, 6206 3 of 22

epochs [9]. The real group includes the learning rate [25], dropout rate [25], regularization
factor [25], network weight initialization [5], and momentum [4]. The categorical group
comprises activation function type [8] and optimization method [8].

Considering that a change in the value of each hyper-parameter changes the values
of the neural network parameters that affect the output of the network, and also that ex-
amination of any possible combination of hyper-parameters is time-consuming, expensive
and practically impossible, studies have investigated the effect of adjusting and optimizing
some of the most important hyper-parameters.

In this regard, the article in [4] employed the HPO method for bearing fault diag-
nosis in mechanical equipment. Parallel computing was used to find hyper-parameters
of the deep belief network (DBN). The learning rate and momentum were optimized,
while other hyper-parameters were predefined and kept constant. Additionally, Wu Deng
et al. used quantum-inspired differential evolution (DE) to optimize DBN parameters.
Results showed an improvement in global search and avoiding premature convergence for
fault classification [28].

The numbers of hidden neurons as a hyper-parameter and of the weights/biases
as parameters were optimized in a feed-forward ANN by Gray wolf optimizer in [18].
Feed-forward ANNs (not back-propagation) were used because adjusted parameters were
achieved by the optimization method.

Y. Peng et al. proposed an HPO method based on a fuzzy system in [8]. They
optimized the number of hidden layers and the number of neurons in each layer of a DNN.
The activation function type and optimization method, including Genetic Algorithms (GA),
Bayesian search, grid search, random search, and quasi-random search, were selected
automatically during HPO. For preventing over-fitting, the dropout technique was used.
The proposed method was tested in three rainfall prediction datasets.

The authors of [29] suggested a distributed particle swarm optimization (PSO) for
the HPO of a convolution neural network (CNN). They were concerned about the time-
consuming population search based on distributed PSO, and parallel computing was
employed to speed up the algorithm. They optimized the number and size of the kernels,
the type of pooling (max or average) for two convolutional layers, the activation function
type in convolutional layers, the number of neurons, learning rate, and the dropout rate of
the fully connected layers.

Time-series prediction of congestion in highway systems based on long short-term
memory (LSTM) was investigated in [9]. To obtain the proper model and structure, the au-
thors recommended an HPO method by applying the Bayesian optimization (BO) method.
Five hyper-parameters were automatically obtained, including learning rate, the number
of hidden layers, the number of neurons in each layer, batch size, and dropout rate.

The intention of [25] was to examine the robustness of one HPO method over six
benchmarks, contrary to other works that designed an algorithm that fit one problem. In
other work, the authors used BO as an old HPO method in CNN [1] and applied four
strategies to alleviate the drawbacks of BO. They tuned the hyper-parameters of two
convolutional layers and two fully connected layers in this way.

In [26], an intuitive architecture design using GA was proposed for CNN. The obtained
model was evaluated on a CNN with a single convolutional layer and a fully connected
layer. Additionally, some hyper-parameters, including maximum epochs, batch size, initial
learning rate, regularization, and momentum were optimized by PSO to prepare a CNN
for expression recognition in [30].

Since the success of neural networks depends on their structure, the article in [31] pro-
posed a micro-canonical optimization algorithm for overcoming large parameter spaces and
optimizing hyper-parameters of a CNN. Hyper-parameters were the number of convolu-
tion layers, activation function type, batch size, pooling type, and dropout rate. The method
was evaluated by six image recognition datasets and exhibited accuracy improvement.

State-of-health estimation and remaining usable life prediction in battery prognosis
were examined in [32] by a deep convolution neural network. The authors addressed

Sensors 2022, 22, 6206 4 of 22

hyper-parameter tuning that affected DNN performance. They improved the algorithm by
using the BO method.

Anjir A. Chowdhury et al. concentrated on the role of hyper-parameter optimization
in the performance and reliability of deep learning outcomes [33]. They compared several
HPO algorithms to obtain better validation accuracy in DNNs and concluded that most of
them are computationally expensive. Finally, a greedy approach-based HPO algorithm was
proposed for enabling faster computing on edge devices for on-the-fly learning applications.
The VGG and ResNet architectures were used, and their hyper-parameters such as epochs,
number of hidden layers, number of units per layer, activation function, dropout rate, batch
size, and learning rate were optimized.

The Gray wolf optimization was employed to optimize the parameters of the kernel
extreme learning machine to realize a hyperspectral image classification method in [34].

2.2. Automatic Personality Perception

In psychology, the big five inventory (BFI) is a well-known theory of personality with
five traits, including openness to experience (Ope.), conscientiousness (Con.), extraversion
(Ext.), agreeableness (Agr.), and neuroticism (Neu.). These traits are in an individual simul-
taneously by different scores and can be measured by a BFI questionnaire in general [35,36].

Due to the importance of personality in daily life, computer science researchers have
investigated personality trait identification by multimodal media (audio, text, video, image)
recently. Here, we focus on studies structured by deep learning methods.

A multimodal approach for perceiving personality traits was proposed by employing
well-known deep structures (ResNet-v2-101 and VGGish) [37]. The LSTM network for
using temporal information was added at the end. The authors optimized only the learning
rate, while other hyper-parameters were configured manually. It is clear that the structure of
the mentioned deep methods is fixed, and the weights and biases are pre-trained. Therefore,
HPO or HPT does not tune according to each dataset in these networks.

Given the fact that personality traits can influence appearance, MobileNetv2 and
ResNeSt50 networks were employed in [38] to extract facial features and classification.
Results specified that one pre-trained network such as MobileNetv2 is inappropriate for
classifying all five personality traits. It indicated that each trait must classify by a specific
model, which means different hyper-parameters are necessary. However, the authors did
not mention it directly and applied a combination of two pre-trained deep networks to
build a complex deep model.

Onno Kampman et al. examined feature extraction and the classification of five person-
ality traits by applying a one-dimensional CNN to a raw audio dataset. The HPT of the deep
network containing regularization factors and kernel size was performed manually [39].

One of the personality detection applications is discovering interpersonal communica-
tion skills. Article [40] investigated this aspect from a video interview using a semisuper-
vised CNN in which HPT was performed by trial-and-error. The authors concentrated on
video processing, and a fixed hyper-parameter set to utilize for all traits.

The study in [41] analyzed the acoustic and lexical features of a speech signal that
were affected by BFI traits. Additionally, it designed six models based on recurrent neural
networks for classifying those traits. Hyper-parameters such as hidden size, learning rate,
batch size, and dropout percentage were defined, but tuning them was not discussed.

3. Dataset

The SSPNet speaker personality corpus (SPC) is a well-known automatic personality
perception dataset introduced in 2010. This dataset originally contained 640 recorded
speech signals of 322 native French speakers. There is one speaker in each clip recorded
for 10 s. Due to the studies on the effect of mental factors on speech signals [42], the
collected clips were emotionally neutral, and to confirm that lexical content did not affect
the personality scores, evaluators who were foreign to the French language were selected.
Therefore, eleven assessors who did not understand French evaluated each clip based on

Sensors 2022, 22, 6206 5 of 22

the BFI questionnaire. The average score of these assessors was considered as the final
score for each clip. Hence, five scores were obtained for each clip [43].

Although the SPC dataset has been applied in several works and is a proper dataset
for comparison with the new methods, the number of samples is uses is low to train the
enormous number of parameters of a DNN. This important challenge was addressed in
our previous work [24], and we proved that the sample size of speech signals could be
enhanced with data augmentation methods based on a spectrogram so that the prosodic
content of speech could be preserved. Data augmentation is a popular technique to expand
the size of the dataset artificially and is widely used in image processing. However, using
this technique in speech is not as easy as using an image. In other words, we needed to
choose transformations that maintain the speaker’s personality, and we had to be confident
that such manipulations in the spectrogram do not interfere with the extracted features
related to personality traits. In this regard, frequency masking and time warping were
selected as data augmentation methods, and the number of clips increased up to 640,000.
For more details, please see [24].

4. Feature Extraction

Despite DNN’s ability to perform automatic feature extraction from raw speech signals,
deep learning methods have been generally applied to manually extracted hand-crafted
audio features. This is mainly because of the large volume of data required for deep
learning methods to outperform. Nevertheless, building a dataset with large available
labeled samples is costly, time-consuming, and laborious work in the automatic personality
perception field, which restricts various methods. Therefore, previous studies have used
handcrafted features for the DNN input [44].

These handcrafted features contain 6373 statistical features extracted from 130 low-
level descriptions (LLD) [45]. Table 1 contains 65 LLD features and 65 first derivatives of
LLD (∆LLD), for a total of 130 LLD features.

For the LLD feature extraction process, each clip was divided into 60 ms frames with a
20 ms overlap in the time domain and 20 ms frames with a 10 ms overlap in the frequency
domain by the Opensmile2.3 toolkit.

Table 1. The 130 LLD features, including 65 LLD and 65 ∆LLD features [46].

4 Energy Related LLD Group

Sum of Auditory Spectrum (Loudness) Prosodic
Sum of RASTA-Style Filtered Auditory Spectrum Prosodic
RMS Energy, Zero-Crossing Rate Prosodic

55 Spectral LLD Group

RASTA-Style Auditory Spectrum, Bands 1–26 (0–8 kHz) Spectral
MFCC 1-14 Cepstral
Spectral Energy 250–650 Hz, 1 k–4 kHz Spectral
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 Spectral
Spectral Flux, Centroid, Entropy, Slope, Harmonicity Spectral
Spectral Psychoacoustic Sharpness Spectral
Spectral Variance, Skewness, Kurtosis Spectral

6 Voicing Related LLD Group

F0 (SHS & Viterbi Smoothing) Prosodic
Probability of Voicing Sound Quality
Log. HNR, Jitter (Local, Delta), Shimmer (Local) Sound Quality

Sensors 2022, 22, 6206 6 of 22

Table 1. Cont.

4 Energy Related LLD Group

Mean Values
Arithmetic Mean A∆, B, Arithmetic Mean of Positive Values A∆, B,
Root-Quadratic Mean, Flatness
Moments: Standard Deviation, Skewness, Kurtosis
Temporal Centroid A∆, B
Percentiles
Quartiles 1–3, Inter-Quartile Ranges 1–2, 2–3, 1–3,
1%—tile, 99%—tile, Range 1–99%
Extrema
Relative Position of Maximum and Minimum, Full Range (Maximum–Minimum)
Peaks and Valleys A

Mean of Peak Amplitudes,
Difference of Mean of Peak Amplitudes to Arithmetic Mean,
Peak to Peak Distances: Mean and Standard Deviation,
Peak Range Relative to Arithmetic Mean,
Range of Peak Amplitude Values,
Range of Valley Amplitude Values Relative to Arithmetic Mean,
Valley-Peak (Rising) Slopes: Mean and Standard Deviation,
Peak-Valley (Falling) Slopes: Mean and Standard Deviation
Up-Level Times: 25%, 50%, 75%, 90%
Rise and Curvature Time
Relative Time in which Signal is Rising,
Relative Time in which Signal has Left Curvative
Segment Lengths A

Mean, Standard Deviation, Minimum, Maximum
Regression A∆, B
Linear Regression: Slope, Offset, Quadratic Error,
Quadratic Regression: Coefficients a and b, Offset c, Quadratic Error
Linear Prediction LP Analysis Gain (Amplitude Error), LP Coefficients 1–5
A Functionals applied only to energy related and spectral LLDs (group A)
B Functionals applied only to voicing related LLDs (group B)
∆ Functionals applied only to ∆LLDs
∆ Functionals not applied only to ∆LLDs

5. Proposed Method

This section is divided into two parts. In the first part, we thoroughly describe the
new optimization method mathematically. In order to apply our optimization method to
the SAAE, we had to address several problems. The second part deals with this issue and
its solution.

5.1. The Proposed Optimization Method

HPO of deep learning is a time-consuming task in practice that depends on the network
depth, the size of parameters, processor system, and optimization algorithm speed [5].
Applying HPO to deep learning is challenging. It can be (1) the unsupervised learning
of most deep learning methods that causes trouble for optimization and imperfect tuning
of parameters [47], (2) a large model with enormous trainable parameters that lead the
processing system to runtime errors [5,8], and (3) an intricate search space created by
different types of hyper-parameter domains (categorical, continuous, and integer value),
causing inherent computational complexity [5]. A larger search space gives rise to a longer
search time.

Parallel evaluation can partly reduce optimization time [48], and culture speeds up the
population’s evolution more than chromosomes (each chromosome represents a solution
in the population space) [49]. Accumulated experience that is potentially accessible to all
individuals is called culture, which is used in problem-solving activities [50]. The knowl-
edge extracted by identifying patterns in the population’s problem-solving experiences

Sensors 2022, 22, 6206 7 of 22

influences the generation of new solutions [51]. Therefore, the combination of CA and
parallel computing can facilitate the discovery of the search space [52]. In this regard,
researchers are interested in combining CA with other optimization algorithms. Sun et al.
combined a cultural algorithm and two PSO populations and shared their belief space. It
indicated that sharing knowledge of belief space can improve performance by avoiding
local optima [53]. A single population and multi-population based on CA was proposed
in [54]. A PSO population-based method with interactive belief space was introduced
by [49]. A hybrid evolutionary optimization method coupling CA with GAs was defined
in [55]. Fuzzy operations were employed to exchange individuals between belief space and
population space in [56].

From this perspective, we proposed a four-island approach based on the parallel
evaluation and CA.

Although CA and parallel computing can perform better than the basic optimization
algorithms [57], they do not provide enough convergence speed alone for deep learning.
Thus, three driving force factors were applied to population space for creating interactive
space between four island population spaces. Creating interactive population space causes
interactive belief space, which can determine the direction and step size faster than tradi-
tional optimization methods. In this regard, our proposed method is called the multi-island
interactive cultural (MIC) algorithm.

The MIC method is illustrated in Figure 1. In this method, control parameters are
configured firstly. The initial population X[m, D] is generated randomly in the feasible
space. The variable m indicates the population size (the number of chromosomes or
individuals), and D is chromosome dimension (the number of genes).

Sensors 2022, 22, x FOR PEER REVIEW 8 of 23

Start Set parameters and initial
population X[m,D]

randomly

GA Island

PSO Island

DE Island

ES Island

Interactive
Belief Space

Evaluate Islands
with defined

fitnessIn
te

ra
ct

iv
e

po
pu

la
tio

n
sp

ac
e

w
ith

EM

, L
M

, M
M

Stop Criteria? Finish
Yes

No

Accept
Influ

AcceptInflu AcceptInflu

Influ
AcceptBeliefs N[D],S< >

Figure 1. Flowchart of the MIC algorithm.

After preparing the random initial population, it transfers into the four islands in
parallel (gray lines): GA, PSO, DE, and evaluation strategy (ES). The GA and PSO are the
optimization algorithms widely applied to HPO studies in deep learning [1,8]. GA is far
more successful in complex networks such as CNNs, but eliminates previous information
by changing the population every iteration [50]. PSO shares information between the par-
ticles and is popular on the smaller networks [29]. The DE algorithm is utilized in optimi-
zation problems due to the high convergence speed and low control parameters when
searching global optima. It is suitable for nonlinear search spaces [28]. The ES is less pop-
ular among the global optimization algorithms because it is a simple mutation-selection
method, but it is helpful in making small changes [48]. It should be noticed that in the first
iteration, the population of the four islands is the same.

The four islands were evaluated individually and in parallel. Then, some individuals
of each island were randomly selected to transfer into an interactive belief space (InBS)
through an acceptance function (colored arrows). Here, the acceptance function was 25%
of the best individuals of each island. So, the belief space size was y[m, D].

The InBS consisted of normative (N[D]) and situational knowledge (S) of all islands.
Knowledge of different islands in the belief space causes the chromosomes to move away
from unwanted regions and get closer to the optimal points by using different experiences
faster than previously published works. InBS can be used effectively to prune the popu-
lation space.

Normative knowledge represents the range of the best solutions by determining the
upper and lower bands of each gene of a chromosome and is used to influence the direc-
tion of the search efforts within the promising ranges. In other words, it computes the
range of each gene that leads the individual to a good solution.

The offspring affected by normative knowledge are generated by Equation (1) as

Figure 1. Flowchart of the MIC algorithm.

After preparing the random initial population, it transfers into the four islands in
parallel (gray lines): GA, PSO, DE, and evaluation strategy (ES). The GA and PSO are the
optimization algorithms widely applied to HPO studies in deep learning [1,8]. GA is far
more successful in complex networks such as CNNs, but eliminates previous information
by changing the population every iteration [50]. PSO shares information between the
particles and is popular on the smaller networks [29]. The DE algorithm is utilized in

Sensors 2022, 22, 6206 8 of 22

optimization problems due to the high convergence speed and low control parameters
when searching global optima. It is suitable for nonlinear search spaces [28]. The ES is less
popular among the global optimization algorithms because it is a simple mutation-selection
method, but it is helpful in making small changes [48]. It should be noticed that in the first
iteration, the population of the four islands is the same.

The four islands were evaluated individually and in parallel. Then, some individuals
of each island were randomly selected to transfer into an interactive belief space (InBS)
through an acceptance function (colored arrows). Here, the acceptance function was 25% of
the best individuals of each island. So, the belief space size was y[m, D].

The InBS consisted of normative (N[D]) and situational knowledge (S) of all islands.
Knowledge of different islands in the belief space causes the chromosomes to move away
from unwanted regions and get closer to the optimal points by using different experi-
ences faster than previously published works. InBS can be used effectively to prune the
population space.

Normative knowledge represents the range of the best solutions by determining the
upper and lower bands of each gene of a chromosome and is used to influence the direction
of the search efforts within the promising ranges. In other words, it computes the range of
each gene that leads the individual to a good solution.

The offspring affected by normative knowledge are generated by Equation (1) as

yt+1
p+i,j =

yt

i,j+
∣∣∣(ut

j
− lt

j
) ∗N(0, 1)

∣∣∣ if yt
i,j < lt

j
,

yt
i,j−
∣∣∣(ut

j
− lt

j
) ∗N(0, 1)

∣∣∣ if yt
i,j > ut

j
,

yt
i,j + β

∣∣∣(ut
j
− lt

j
)
∣∣∣∗N(−1, 1) otherwise,

(1)

where uj is the upper and lj is the lower band of InBS for jth gene, respectively, β is a
constant value, t is the current iteration, and N(0, 1) is the normal distribution.

For each gene, the structure contains the upper band (ut
j), the lower bound (ltj), the upper

band value (Ut
j), and the lower bound value (Lt

j), which are obtained by Equations (2)–(5),
respectively.

Lt+1
j =

{
f(yi) if yi,j ≤ ltj Or f(yi) < Lt

j ,

Lt
j otherwise,

(2)

lt+1
j =

{
yt

i,j if yt
i,j ≤ ltj Or f(yt

i) < Lt
j ,

ltj otherwise,
(3)

Ut+1
j =

{
f(yi) if yi,j ≥ ut

j Or f(yi) < Ut
j ,

Ut
j Otherwise,

(4)

ut+1
j =

{
yt

i,j if yt
i,j ≥ ut

j Or f(yt
i) < Ut

j ,

ut
j otherwise,

(5)

where yi,j is the jth gene in the ith individual of InBS, and the f(yi) is the value of the individual
yi calculated by the fitness function. A fitness function (loss function) evaluated individuals
of each island separately. The problem description determines the fitness function.

The situational knowledge, as seen in Equation (6), adjusts the mutation step size
relative to the distance between the current best individual and the other individuals. The
greater the distance between ith individual, yi, and the current best individual, the greater
the step size and vice versa.

Updating the situational knowledge adds the InBS’s best individual to the situational
knowledge if it outperforms the current best individual, as described in Equation (6).

Sensors 2022, 22, 6206 9 of 22

Here, yt
best is the best individual in the InBS at iteration t. The influence rule can be

represented with Equation (7) (for i = 1, . . . , m and j = 1, . . . , D).

< Et+1
1 , Et+1

2 , . . . , Et+1
e >=

< yt

best, Et
2, . . . , Et

e > if f(yt
best) > f(Et

1),
< yt

best > if change detected,
< Et

1, Et
2 . . . , Et

e > otherwise,

(6)

yt+1
p+i,j

=

yt

i,j
+
∣∣∣(yt

i,j
− Et

i,j
) ·Ni,j(0, 1)

∣∣∣ if yt
i,j
< Et

j
,

yt
i,j
−
∣∣∣(yt

i,j
− Et

i,j
) ·Ni,j(0, 1)

∣∣∣ if yt
i,j
> Et

j
,

yt
i,j
+ β

∣∣∣(yt
i,j
− Et

i,j
)
∣∣∣·Ni,j(0, 1) otherwise,

(7)

where Ej is the jth gene in the best individual, β is a constant factor, N(0, 1) is the normal
distribution, and yp+i,j is the offspring of the individual yi,j.

After updating InBS with new generations, some individuals are transferred into
each island population space by influence function. There is no doubt that the individuals
of InBS contain the knowledge of all of the islands. This is the ability of the proposed
method. Various studies have shown that the efficiency of optimization methods is altered
for different problems. In other words, choosing an optimization method for a problem
is a challenge that some researchers consider as a kind of hyper-parameter that needs
to be tuned. Hence, 25% of the best individuals of InBS were replaced with 25% of the
worst population on each island. Offspring generation processing is started in each island
separately and evaluated through fitness function.

If the algorithm reaches the stopping criterion, the process will be stopped. Other-
wise, interactive population space is created by three driving forces in order to promote
cooperation among the islands and increase diversity.

The three driving-force methods are named the elitism method (EM), merge method
(MM), and lambda method (LM).

In interactive population space, all individuals of each island are considered. In EM,
the best individuals with size m are preserved and replaced with the old population on each
island. As we use this method, the populations of the next generation for each island are
the same. This driving force method forces the four basic algorithms to create interactive
space only by the best individuals of four islands.

In MM, after considering all individuals of each island, a random number a, a ∈ (0, 1), is
produced. The a×m (a ∗ sizeofpopulation) of the best individuals are merged with (a − 1) × m
of the old population on each island. It is clear that each island has a unique new population
in this interactive space.

In LM, two of the islands are selected randomly, according to two random numbers
µ, µ ∈ (0, 1), and λ, λ ∈ (0, 1), representing emigration and immigration, respectively. The
random numbers of individuals based on µ and λ of each island indicate which individuals
can immigrate to and emigrate from another random island. This method forces islands to
cooperate with the best individual and the worst one to create interactive space.

Due to the interaction and sharing of individuals among the four islands, if one
algorithm traps in local optima, others can lead MIC into global optima because the result
is not dependent on a single algorithm. This feature allows the MIC to be used for various
global optimization problems to escape local optima efficiently.

The MIC strategy is presented step by step below (Algorithm 1).

Sensors 2022, 22, 6206 10 of 22

Algorithm 1: Implementation of MIC

Step 1: Set the MIC parameters randomly.
Step 2: Generate the initial population randomly.
Step 3: Transfer 25% of the best individuals of each island into InBS (Accept).
Step 4: Update Belief space whith Equations (1)–(7).
Step 5: Transfer 25% of offspring into each island (Influ).
Step 6: If stop criterion < ζ

Stop algoriyhm.
Else

Go to Step 7.
Step 7: Create Interactive population space by using the following three methods:

EM: m of the best individuals of four islands are selected and replaced with an old
population.

MM: The a × m (a ∗ sizeo f population) of the best individuals are selected and merged
with (a − 1) × m, which is obtained from the old population in islands.

LM: According to two random numbers, µ and λ, some individuals of a random island
can immigrate to and emigrate from another random island.
Step 8: Go to Step 3.

5.2. Stacked Asymmetric Auto-Encoder HPO Using MIC

Since our work aimed to obtain the SAAE near-optimal structure, a brief overview of
this method is presented below.

(1) Stacked asymmetric auto-encoder

The AsyAE is a semi-supervised DNN that poses the curse of dimensionality. The
schematic of the AsyAE is illustrated in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 23

MM: The a × m (𝑎 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)of the best individuals are selected and
merged with (a − 1) × m, which is obtained from the old population in islands.
LM: According to two random numbers, µ and λ, some individuals of a ran-
dom island can immigrate to and emigrate from another random island.

Step 8: Go to Step 3.

5.2. Stacked Asymmetric Auto-Encoder HPO Using MIC
Since our work aimed to obtain the SAAE near-optimal structure, a brief overview of

this method is presented below.
(1) Stacked asymmetric auto-encoder

The AsyAE is a semi-supervised DNN that poses the curse of dimensionality. The
schematic of the AsyAE is illustrated in Figure 2.

1

 2

 3

 4

 1

 2

 3

 4

Backpropagation Error

.

.

.

.

.

.
.
.
.

Encoder

Decoder d

+

+

+

+

+

+ + -

 + -

 + -

 + -

 + -

 + -

(2)W(1)W

x

x

x
x

x

x

x

x
x

x

(1)net

(2)net

n1 n1

(2)
1o
(2)
2o
(2)
3o
(2)
4o

(2)
n1

o
(2)
n +11

o

(1)
1o
(1)
2o

(1)
n2

o

Figure 2. Schematic of the asymmetric auto-encoder [24].

In this type, one neuron is added in the decoder part of the conventional auto-en-
coder with the desired value of the problem, which is the studied personality score in our
field. The symmetry of the encoder and decoder parts is disrupted by this single neuron
and made asymmetric.

The feed-forward equations of the AsyAE are similar to the conventional one as fol-
lows. For representing encoder and decoder layers, superscripts of 1 and 2 were used,
respectively.

(1) (1)= ,net W X (8)

()(1) (1)= f ,O net (9)

where (1)W indicates the encoder weight matrix, X displays the input matrix, O(1) is the
encoder output matrix, and f is the activation function.

(2) (2) (1) ,net = W O (10)

()(2) (2)= f ,O net (11)

where (2)W and O(2) are the weight and output matrixes of the decoder layer, respec-
tively.

Figure 2. Schematic of the asymmetric auto-encoder [24].

In this type, one neuron is added in the decoder part of the conventional auto-encoder
with the desired value of the problem, which is the studied personality score in our field.
The symmetry of the encoder and decoder parts is disrupted by this single neuron and
made asymmetric.

Sensors 2022, 22, 6206 11 of 22

The feed-forward equations of the AsyAE are similar to the conventional one as follows.
For representing encoder and decoder layers, superscripts of 1 and 2 were used, respectively.

net(1) = W(1)X, (8)

O(1) = f
(

net(1)
)

, (9)

where W(1) indicates the encoder weight matrix, X displays the input matrix, O(1) is the
encoder output matrix, and f is the activation function.

net(2)=W(2)O(1), (10)

O(2) = f
(

net(2)
)

, (11)

where W(2) and O(2) are the weight and output matrixes of the decoder layer, respectively.
The error back-propagation related to the encoder and decoder weights matrixes is

calculated by Equation (12).

E :=
1
k

k

∑
i=1

log(cosh(et)), (12)

where et is the error vector of AsyAE at time t, which is described by Equation (13), and k is
the neuron size of decoder layer output.

et : =dt− ot
(2). (13)

The desired output vector at time t is presented by dt, which belongs to the matrix D.
It is the desired output matrix of AsyAE, which is produced by the combination of desired
labels and AsyAE input.

D =

x11 x12 . . . x1n0 L
x21 x22 . . . x2n0 L

...
...

...
...

xm1 xm2 · · · xmn0 L

.

Here, xij is the AsyAE input matrix element, and L is the desired label of the problem.
A stacked asymmetric auto-encoder is a result of putting several AsyAEs together.

(2) Optimizing some hyper-parameters of a stacked asymmetric auto-encoder

Given the fact that the number of DNN hyper-parameters is significantly large, the
simultaneous optimization of all of them complicates the computation and requires high-
performance computing systems. Hence, we compromised between MIC and expertise for
calculating the six critical DNN hyper-parameters as follows:

1. number of neurons in each hidden layer
2. learning rate value
3. initial parameters
4. number of hidden layers
5. maximum epoch of network training
6. preventing over-fitting and under-fitting

For HPO of SAAE, the following principles come after. Figure 3 illustrates the flowchart
of the proposed method in detail.

Sensors 2022, 22, 6206 12 of 22

Sensors 2022, 22, x FOR PEER REVIEW 13 of 23

chromosomes with these dimensions causes a memory error in the processor system and
is not efficient in practice. Another method, suggested by Hinton et al., applies the re-
stricted Boltzman machine (RBM) network to tune the auto-encoder’s initial parameters
[58,59].

According to the ANN-base of an AsyAE and RBM, the AsyAE can be interpreted as
two consecutive RBMs illustrated in Figure 4. The input layer is the visible unit, and the
encoder layer is the hidden unit for the RBM1. In the RBM2, the encoder layer is the visible
unit, and the decoder layer is the hidden unit.

Hand-crafted features by
Opensmile toolkit

(6,373 statistical features)

Does the current AsyAE
better performance than

previous?

Finish
No

Control parameters of
MIC

Tuning Initial Parameter
with GGRBM

Random population
containing Ni and µi

Designing an Asymmetric
Auto-encoder with tuned

Ni and µi

Evaluating designed
Asymmetric Auto-encoder

Tuning Ni and µi
with MICFeature Extraction

and Personality
Classification by

Stacked Asymmetric
Auto-encoder

MIC optimization method

Does stop J criterion occur?

Yes

NO

Yes

Figure 3. Flowchart of SAAE hyper-parameter optimization.

The conventional RBM is based on binary visible and hidden units, called Bernoulli-
Bernoulli RBM (BBRBM). If both visible and hidden units have a Gaussian distribution,
the Gaussian-Gaussian RBM (GGRBM) is employed [60]. Since the AsyAE input and pa-
rameters are real values, we used the GGRBM equations.

1

 2

 3

 4
.
.
.

.

.

.
.
.
.Encoder

Decoder

(2)W(1)W

x

x

x
x

xn1

(2)
1o
(2)
2o
(2)
3o
(2)
4o

(2)
n1

o
(2)
n +11

o

(1)
1o
(1)
2o

(1)
n2

o

RBM1

RBM2

V1

h1=V2

h2
Figure 4. Converting auto-encoder to two RBMs for tuning the initial weights of the encoder and
decoder layers.

Figure 3. Flowchart of SAAE hyper-parameter optimization.

Determining the number of neurons in each hidden layer: In our work, Ni indicates
the number of neurons in the ith hidden layer that will be optimized by the MIC method.
So, the first variable of MIC is Ni, which is an integer value, Ni ∈ [1, m] where m value is
equal to the input size of AsyAE. It forces the AsyAE to be an incomplete network. It means
the encoder layer has fewer neurons than the input layer.

Determining the learning rate in each hidden layer: µi specifies the learning rate in
the ith hidden layer, which will be optimized by the MIC method. Therefore, the second
variable of the MIC population is a real value between zero and one, µi ∈ (0, 1). It
should be mentioned that we set the decimal digit of µi equal to 5 to examine its effect on
SAAE performance.

Initial value of trainable parameters: Although deep learning methods have good
performance in various problems, they are complicated tasks. Because there are huge
factors that strongly influence them, one of the critical factors is initialization.

The DNN parameters need a starting point in the feasible area to be trained. The
proper initial parameters can accelerate the convergence. Contrarily, random initialization
can trap the network in the local optima.

Optimization algorithms such as GA and PSO can be used in this field. However,
the number of DNN parameters (weights and biases) is vast, e.g., 1015, and producing the
chromosomes with these dimensions causes a memory error in the processor system and is
not efficient in practice. Another method, suggested by Hinton et al., applies the restricted
Boltzman machine (RBM) network to tune the auto-encoder’s initial parameters [58,59].

According to the ANN-base of an AsyAE and RBM, the AsyAE can be interpreted as
two consecutive RBMs illustrated in Figure 4. The input layer is the visible unit, and the
encoder layer is the hidden unit for the RBM1. In the RBM2, the encoder layer is the visible
unit, and the decoder layer is the hidden unit.

Sensors 2022, 22, 6206 13 of 22

Sensors 2022, 22, x FOR PEER REVIEW 13 of 23

chromosomes with these dimensions causes a memory error in the processor system and
is not efficient in practice. Another method, suggested by Hinton et al., applies the re-
stricted Boltzman machine (RBM) network to tune the auto-encoder’s initial parameters
[58,59].

According to the ANN-base of an AsyAE and RBM, the AsyAE can be interpreted as
two consecutive RBMs illustrated in Figure 4. The input layer is the visible unit, and the
encoder layer is the hidden unit for the RBM1. In the RBM2, the encoder layer is the visible
unit, and the decoder layer is the hidden unit.

Hand-crafted features by
Opensmile toolkit

(6,373 statistical features)

Does the current AsyAE
better performance than

previous?

Finish
No

Control parameters of
MIC

Tuning Initial Parameter
with GGRBM

Random population
containing Ni and µi

Designing an Asymmetric
Auto-encoder with tuned

Ni and µi

Evaluating designed
Asymmetric Auto-encoder

Tuning Ni and µi
with MICFeature Extraction

and Personality
Classification by

Stacked Asymmetric
Auto-encoder

MIC optimization method

Does stop J criterion occur?

Yes

NO

Yes

Figure 3. Flowchart of SAAE hyper-parameter optimization.

The conventional RBM is based on binary visible and hidden units, called Bernoulli-
Bernoulli RBM (BBRBM). If both visible and hidden units have a Gaussian distribution,
the Gaussian-Gaussian RBM (GGRBM) is employed [60]. Since the AsyAE input and pa-
rameters are real values, we used the GGRBM equations.

1

 2

 3

 4
.
.
.

.

.

.
.
.
.Encoder

Decoder

(2)W(1)W

x

x

x
x

xn1

(2)
1o
(2)
2o
(2)
3o
(2)
4o

(2)
n1

o
(2)
n +11

o

(1)
1o
(1)
2o

(1)
n2

o

RBM1

RBM2

V1

h1=V2

h2
Figure 4. Converting auto-encoder to two RBMs for tuning the initial weights of the encoder and
decoder layers.

Figure 4. Converting auto-encoder to two RBMs for tuning the initial weights of the encoder and
decoder layers.

The conventional RBM is based on binary visible and hidden units, called Bernoulli-
Bernoulli RBM (BBRBM). If both visible and hidden units have a Gaussian distribution, the
Gaussian-Gaussian RBM (GGRBM) is employed [60]. Since the AsyAE input and parameters
are real values, we used the GGRBM equations.

The energy function of the GGRBM is defined as Equation (14), where v presents
visible units and h shows hidden units. It should be noted that the AsyAE input and the
encoder output are the visible units of RBM1 and RBM2, respectively.

E(v, h) = −
gv

∑
i=1

gh

∑
j=1

Wi,j
vihj

σiσj
−

gv

∑
i=1

(vi − ai)
2

2σ2
i
−

gh

∑
j=1

(hj − bj)
2

2σ2
j

, (14)

where ai and bj are visible and hidden units biases, respectively, σi and σj are their standard
deviations. Wi,j is the weight between the visible and hidden units. A probability value is
assigned to each possible visible and hidden unit by Equation (15),

P(v, h) =
1
Z

exp(−E(v, h)). (15)

Here, Z is the normalization constant calculated by Equation (16).

Z = ∑
v

∑
h

exp(−E(v, h)). (16)

Equation (17) shows the loss function, which must be maximized,

maximize{Wi,j,ai,bj}
1
c

c

∑
L=1

log
(

P
(

vL, hL
))

, (17)

The updating functions are

∆Wi,j = ζ
(
< vihj >data − < vihj >model

)
, (18)

∆ai = ζ(< vi >data − < vi >model), (19)

Sensors 2022, 22, 6206 14 of 22

∆bj = ζ
(
< hj >data − < hj >model

)
, (20)

where < • >data and < • >model are expanded values of sample data and model proba-
bilistic distribution, and ζ is the learning rate.

We described GGRBM briefly, and this is the time to use it. For a traditional auto-
encoder, first, the initial parameters of the encoder layer are randomly selected and then
trained by the GGRBM method. The trained parameters are considered the encoder layer’s
initial parameters, and its transposition is employed for the decoder layer. However,
in the AsyAE, the encoder and decoder parameters are not symmetric and have to be
obtained individually. So, the above principle is applied to the decoder layer to obtain
the initial parameters.

The number of hidden layers: The value of this hyper-parameter is dependent on
the performance of AsyAEs. The classification performance of each AsyAE is examined in
MIC for each pair of (Ni, µi). For the next AsyAE, the performance has to be better than that
of the previous one. If the performance of AsyAE(i+1) is better than that of AsyAE(i), the MIC
algorithm is continued.

The performance criterion is different from one problem to another. The Unweighted
Average (UA) recall criterion frequently used in personality perception studies is calculated
by Equation (21),

UA recall =
1
2

(
recallLow + recallHigh

)
, (21)

The recallLow means the recall of detecting the low degree of studied personality, and
the recallHigh indicates the recall of detecting its high degree.

The maximum epoch of network training: Generally, the DNN training process
proceeds to reach maximum epoch (updating time) [40]. As discussed in [24], proper data
separation does not occur in the maximum epoch. Thus, a J variation is employed as
a stopping criterion to finish the training process in the epoch in which the maximum
separation is achieved.

J is calculated as follows,

J =
det(SB)

det(SW)
, (22)

where SW is a within-class scattering matrix, and SB is a between-class scattering matrix [61].
det represents the determinant of a matrix.

Sw =
c

∑
i=1

∑
x∈ci

(X−µi)(X− µi)
T, (23)

SB =
c

∑
i=1

ni(µi − µ)(µi − µ)T. (24)

Here, ni is the instance number of ith class, X is the encoder output matrix, and c is
the number of classes, µ is the matrix for average all instances, and µi is the class average
matrix of ith class.

Preventing over-fitting and under-fitting problems: The over-fitting problem hap-
pens when a model trains properly on the training dataset but performs poorly on the
testing dataset. The under-fitting problem occurs when a model performs poorly on both
the training and testing samples.

The number of layers and the neurons in each layer can excessively lead a model
into over-fitting or under-fitting. This can be easily changed by changing the structure.
More neurons and layers complicate the model, but fewer cannot pursue the data pattern.
Therefore, this is one of the problems that has to be dealt with in designing an optimum
structure. So, a new loss function is defined to guide the model toward good fitting.

Loss =
UAtrain

a
∗ UAval

b
, (25)

Sensors 2022, 22, 6206 15 of 22

where a is the training threshold, and b is the validation threshold. We already discussed
the UA recall criterion used chiefly in personality perception. We applied the loss function
defined in Equation (25) instead of Equation (21). The aim is the maximization of Equation
(25). We set a = 0.8 and b = 0.6 because a UAtrain of more than 80% and UAval of more than
60% are acceptable. The loss value can be in the range of [2.08, 0]. So, the set of (Ni, µi) is
acceptable to be maximized in Equation (25).

Final algorithm: The pseudo-code of optimizing SAAE hyper-parameters is described
in Algorithm 2.

Algorithm 2: Optimizing SAAE hyperparameters

Set the initial parameters Old_max = 0, G_max = 2.08 (upper band of Loss), OldEv_Asy = 0 (the
first AsyAE performance) and the other randomly.
Set the input matrix of AsyAE.
Set i = 1 (i indicates the number of hidden layer)
Set NewEv_Asy = 1 (the (i + 1)th AsyAE performance)
While NewEv_Asy> OldEv_Asy

OldEv_Asy = NewEv_Asy
While (G_max-Old_max) > 0.1

Optimize (Ni, µi) with MIC.
Initialize the AsyAE parameter randomly.
Tune AsyAE initial parameters with GGRBM.
Train AsyAE while J increases.
Evaluate Equation (25).
If the value of Equation (25) ≥ Old_max

Old_max = the current value of Equation (25),
NewEv_Asy = the value of Equation (25).

End if
Set the encoder layer output of ith AsyAE as the input of (i + 1)th AsyAE.
i = i + 1.

End while
End while

6. Simulations and Results

In this section, firstly, the results of the MIC method on three benchmarks and com-
parison with other published methods will be discussed. Then, the MIC will be used to
design the structure of five individual DNNs for classifying five personality traits. A final
comparison can be found at the end of this section.

6.1. The Results of the MIC on Three Optimization Benchmarks

Three well-known, multimodal, continuous, and non-separable benchmark func-
tions that have a global minimum value of zero, called Rastrigin [52], Ackley [62], and
Griewang [62], are used to validate the MIC method.

The multimodal property means having many local optima or peaks in the function,
which can test the ability of an algorithm to avoid being stuck in a local minimum. Non-
separable refers to the independence of obtained solution variables. If all variables are
independent, they can be optimized independently, and the function will be optimized [62].
Therefore, these three functions are complex problems in evaluating the performance of
any new optimization algorithm.

The formula, feasible range of variables, and the global optima points of three functions
are summarized in Table 2.

Sensors 2022, 22, 6206 16 of 22

Table 2. Description of Three Benchmark Functions.

Name Formula Range Optimal f(x)

Rastrigin f(x) = 10n +
n
∑

i=1
x2

i − 10 cos(2πxi) −5.12 < xi < 5.12 0

Ackley f(x) = −20 exp

(
−0.02

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + exp(1) −32 ≤ xi ≤ 32 0

Griewang f(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 −600 < xi < 600 0

Here, n indicates the dimension of the function, which is n ≥ 2 for all mentioned functions.
Figure 5 shows the shape of the functions described in Table 2. As can be seen, all

three functions have many local optima and are suitable to show the ability of optimization
methods to escape from being stuck in local optima.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 23

(A) (B) (C)

Figure 5. Benchmark functions (A) Rastrigin, (B) Ackley, and (C) Griewang.

In order to show the performance of MIC against the conventional optimization
methods, the comparison results of the mentioned four islands and MIC are reported in
Table 3.

Given the fact that the problem complexity increases with increasing dimensionality,
increasing the number of the variables (dimension) grows the search space, which makes
exploring the best solution difficult [62]. To investigate the effect of dimension on search-
ing quality in MIC, we compared our results with 30D and 10D in Table 3.

For a fair comparison, all parameters and initial populations for the basic algorithms
and MIC were set to the same values.

The following six criteria were utilized for a more reliable analysis. It should be men-
tioned that these criteria are common in optimization problems.
• The average of iterations where the stop criterion is reached for examining conver-

gence speed (AvI).
• The average of obtained best optima point (AvP).
• The smallest iteration at which the stop criterion occurs (SI).
• The best-obtained optima point (BOP).
• Calculating the standard deviation (SD) for proving the efficiency and robustness of

the algorithm.
• The number of successful runs divided by the total number of runs called success

rate (SR) .
Table 3 shows the simulation outcomes of MIC and four basic optimization algo-

rithms.
It was concluded by AvI numerical results that MIC can reach more accurate solu-

tions with a faster convergence speed than traditional algorithms in n = 10. Although for
the n = 30, the MM performance diminishes, LM and EM preserve their performance with
increasing complexity. It is demonstrated that LM and EM improve solutions steadily for
a long time without getting stuck in local minima. It is clear that MIC is more powerful
than the four basic algorithms alone when it comes to solving global optimization prob-
lems.

According to the AvP values in n = 10 and n = 30, traditional algorithms are often
unsuccessful in finding favorable solutions in comparison to MIC, especially EM. Addi-
tionally, it can be concluded from AvP that the MIC speeds up the convergence to the
global optima. The AvP values in n = 30 in comparison to n = 10 decreased about 0.1 in
Rastrigin and remained constant for the other two functions in LM and EM. The change
in the AvP values in MM is meaningful, which indicates getting stuck in the local opti-
mum with the increase in the complexity of the problem, like the traditional methods.

Our SI outcomes show that the MIC method, especially EM and LM, reaches the stop
criterion in a few iterations. It means the MIC method speeds up convergence. Moreover,
the SI criterion shows that although the MM method performs better than the basic opti-
mization methods in simpler functions (n = 10), its performance drops in complex func-
tions (n = 30). LM and EM not only show their effectiveness in simple functions, but also
perform well in complex problems compared to other methods.

Figure 5. Benchmark functions (A) Rastrigin, (B) Ackley, and (C) Griewang.

In order to show the performance of MIC against the conventional optimization methods,
the comparison results of the mentioned four islands and MIC are reported in Table 3.

Given the fact that the problem complexity increases with increasing dimensionality,
increasing the number of the variables (dimension) grows the search space, which makes
exploring the best solution difficult [62]. To investigate the effect of dimension on searching
quality in MIC, we compared our results with 30D and 10D in Table 3.

For a fair comparison, all parameters and initial populations for the basic algorithms
and MIC were set to the same values.

The following six criteria were utilized for a more reliable analysis. It should be
mentioned that these criteria are common in optimization problems.

• The average of iterations where the stop criterion is reached for examining convergence
speed (AvI).

• The average of obtained best optima point (AvP).
• The smallest iteration at which the stop criterion occurs (SI).
• The best-obtained optima point (BOP).
• Calculating the standard deviation (SD) for proving the efficiency and robustness of

the algorithm.
• The number of successful runs divided by the total number of runs called success rate (SR).

It was concluded by AvI numerical results that MIC can reach more accurate solutions
with a faster convergence speed than traditional algorithms in n = 10. Although for the
n = 30, the MM performance diminishes, LM and EM preserve their performance with
increasing complexity. It is demonstrated that LM and EM improve solutions steadily for a
long time without getting stuck in local minima. It is clear that MIC is more powerful than
the four basic algorithms alone when it comes to solving global optimization problems.

Sensors 2022, 22, 6206 17 of 22

Table 3. The Results of MIC Compared with Traditional GA, DE, PSO, and ES in Three Benchmark Functions (10D and 30D).

Benchmark
Functions

Optimization
Algorithm

AvI AvP SI BOP SD SR (%) AvI AvP SI BOP SD SR (%)

n=10 n=30

Rastrigin

MIC by LM 83.4 6.7 × 10−5 61 7.2 × 10−5 4.7 × 10−5 100 307.1 7.8 × 10−4 254 4.8 × 10−4 2.4 × 10−4 100
MIC by EM 120.5 7.1 × 10−5 101 8.8 × 10−6 5.8 × 10−5 100 321.5 7.4 × 10−4 187 1.8 × 10−4 5.6 × 10−4 100
MIC by MM 572.5 9.9 × 10−3 131 4.9 × 10−3 4.3 × 10−3 100 2000 0.46 2000 6.1 × 10−4 1.32 60

GA 617.1 1.2 × 10−5 324 6.8 × 10−4 4.6 × 10−3 40 1178.4 1.34 926 6.8 × 10−4 3.20 50
DE 1000 0.22 1000 0.14 0.47 0 2000 4.72 2000 0.10 2.55 0
ES 1000 3.48 1000 1.94 2.39 0 2000 37.4 2000 24.7 14.4 0

PSO 985.7 0.82 857 6.8 × 10−4 0.71 20 2000 10.9 2000 3.13 5.60 0

Ackley

MIC by LM 467.2 4.4 × 10−15 355 4.4 × 10−15 0 100 1039.6 4.4 × 10−15 956 4.4 × 10−15 0 100
MIC by EM 788.4 4.4 × 10−15 462 4.4 × 10−15 0 100 1154.8 3.1 × 10−14 937 4.4 × 10−15 1.9 × 10−15 100
MIC by MM 725.2 1.4 × 10−9 324 3.5 × 10−10 9.2 × 10−10 100 2000 2.48 2000 2.24 0.20 0

GA 957.5 7.3 × 10−2 565 7.2 × 10−3 1.58 70 1895.1 2.86 951 0.01 1.53 10
DE 1000 1.69 1000 1.24 4.47 0 2000 5.35 2000 4.34 0.67 0
ES 1000 4.96 1000 3.20 3.09 0 2000 5.43 2000 5.23 1.9 × 10−1 0

PSO 557.5 8.6 × 10−4 344 6.2 × 10−4 4.1 × 10−4 100 839.5 4.5 × 10−3 162 8.8 × 10−4 7.9 × 10−3 100

Griewang

MIC by LM 154.7 6.2 × 10−14 38 1.2 × 10−14 2.8 × 10−14 100 106 8.4 × 10−14 92 8.7 × 10−14 4.4 × 10−14 100
MIC by EM 171.2 8.4 × 10−14 43 6.4 × 10−14 1.5 × 10−14 100 489 1.1 × 10−13 94 9.1 × 10−14 2.5 × 10−14 100
MIC by MM 775.4 3.3 × 10−13 146 9.6 × 10−14 3.2 × 10−13 100 2000 0.27 2000 9.1 × 10−13 0.16 20

GA 909.8 0.09 84 0.8 × 10−3 0.18 10 2000 0.21 2000 0.09 1.1 × 10−1 0
DE 337.4 9.1 × 10−3 44 7.3 × 10−3 1.1 × 10−3 100 993 0.01 588 7.9 × 10−3 8.8 × 10−1 70
ES 1000 0.36 1000 1.2 × 10−1 0.20 0 2000 0.81 2000 0.76 0.19 0

PSO 555.2 0.02 258 6.6 × 10−2 2.8 × 10−2 30 2000 0.77 2000 0.37 3.1 × 10−2 0

Sensors 2022, 22, 6206 18 of 22

Table 3 shows the simulation outcomes of MIC and four basic optimization algorithms.
According to the AvP values in n = 10 and n = 30, traditional algorithms are often

unsuccessful in finding favorable solutions in comparison to MIC, especially EM. Addition-
ally, it can be concluded from AvP that the MIC speeds up the convergence to the global
optima. The AvP values in n = 30 in comparison to n = 10 decreased about 0.1 in Rastrigin
and remained constant for the other two functions in LM and EM. The change in the AvP
values in MM is meaningful, which indicates getting stuck in the local optimum with the
increase in the complexity of the problem, like the traditional methods.

Our SI outcomes show that the MIC method, especially EM and LM, reaches the
stop criterion in a few iterations. It means the MIC method speeds up convergence.
Moreover, the SI criterion shows that although the MM method performs better than the
basic optimization methods in simpler functions (n = 10), its performance drops in complex
functions (n = 30). LM and EM not only show their effectiveness in simple functions, but
also perform well in complex problems compared to other methods.

The evaluation results of criterion BOP show that the LM and EM methods achieve the
global optimal value more accurately than the basic methods in n = 10 and n = 30. However,
MM implementation results decrease with increasing complexity.

It can be seen that the SD values of MIC, except for MM, are very small in comparison
to those of the four basic algorithms in n = 10 and n = 30, which means the repeatability
and robustness of the new algorithm are due to pruning search space.

The SR results prove that the MIC is very promising in bringing higher reliability than
traditional algorithms because the number of times that LM, EM, and MM reached the
desired value of the function was 100% in n = 10. As can be seen, as the complexity of the
function increases (n = 30), the LM and EM methods are still successful in reaching the
desired value.

From Table 3, it is concluded that despite increasing dimensions, the implementation
outcomes of all algorithms decrease, except EM and LM.

Our study indicates that the quality of the solutions found using our proposed method
for widespread global optima functions is higher than that of the solutions provided by
traditional algorithms. This is due to a more appropriate tradeoff between exploring new
individuals and exploiting highly fit individuals found at the parallelism level. By means of
three widespread test functions, it is demonstrated that the new method has great potential
for substantial improvement in search performance.

Due to the wide usage of these benchmarks, a comparison with other published works
is presented in Table 4. It can be observed that LM and EM achieved the best solution in
Ackley and Griewang functions (30D).

Table 4. Comparison with Other Published Methods in 30D. N/A means not available.

Methods

Benchmarks

Rastrigin Ackley Griewang

AvP SD SR% AvP SD SR% AvP SD SR%

Xin Zhao et al., 2022 [55] 2.1 × 10−13 4.1 × 10−14 100 8.2 × 10−15 1.3 × 10−15 100 3.78 × 10−13 1.7 × 10−13 100
Chentoufi et al., 2021 [49] 0.99 1.31 100 1.0 × 10−15 6.4 × 10−16 43 8.3 × 10−4 5.4 × 10−4 67

MIC_LM 7.8 × 10−4 2.4 × 10−4 100 4.4 × 10−15 0 100 8.4 × 10−14 4.4 × 10−14 100
MIC_EM 7.4 × 10−4 5.6 × 10−4 100 3.1 × 10−14 1.9 × 10−15 100 1.1 × 10−13 2.5 × 10−14 100
MIC_MM 0.46 1.32 60 2.48 0.20 0 0.27 0.16 20

6.2. The Results of Personality Perception with The MIC Method

After the successful outcomes with the MIC method to find the global optima of three
complex benchmark functions, we applied our novel method to find the near-optimal
values of hyper-parameters for classifying five personality traits. We used “near-optimal”
instead of “optimal” structure because tuning of MIC hyper-parameters such as mutation
and crossover rating is chosen randomly.

Taking into account that different personality traits have different effects on speech
characteristics [24,42], using the same DNN structure for all traits to extract features is not

Sensors 2022, 22, 6206 19 of 22

recommended. Assuming the five personality traits were independent, five separate neural
networks were designed and trained to classify the five personality traits.

Hence, the network’s depth was determined by classifying the output of each AsyAE
encoder layer by the SVM with radial basis function kernel. The AsyAE with higher
classification results is considered as the output layer of the SAE.

Table 5 shows the comparison results of our proposed method with other works in
the SPC dataset in terms of UA recall and accuracy. In our previous work, the structure
of SAAE was chosen by trial-and-error, which was time-consuming, and two traits (ex-
traversion and openness) achieved lower accuracy than reported by other research [24].
N/A means not available.

Table 5. Comparison Results of Our Proposed Method with Other Works in the SPC Dataset in Terms
of UA Recall % (Accuracy %).

Methods
Traits

Neu. Ext. Ope. Agr. Con.

Mohammadi et al., 2010 [43] N/A (63) N/A (76.3) N/A (57.9) N/A (63) N/A (72)
Mohammadi et al., 2012 [63] N/A (65.9) N/A (73.5) N/A (60.1) N/A (63.1) N/A (71.3)
Chastagnol et al., 2012 [64] 58 (N/A) 75.5 (N/A) 73.4 (N/A) 65 (N/A) 62.2 (N/A)

Mohammadi et al., 2015 [65] N/A (66.1) N/A (71.4) N/A (58.6) N/A (58.8) N/A (72.5)
Solera-Urena et al., 2017 [66] 65.1 (64.7) 75 (75.1) 59.1 (58.2) 60.3 (60.2) 75.7 (75.6)
Carbonneau et al., 2017 [67] 70.8 (N/A) 75.2 (N/A) 56.3 (N/A) 64.9 (N/A) 63.8 (N/A)

Zhen-Tao Liu et al., 2020 [68] N/A (69.2) N/A (76.3) N/A (74.7) N/A (65.3) N/A (73.3)
Our privuse work 2021 [24] 77.1 (76.9) 76.6 (72.9) 81.2 (70.4) 80.7 (68.7) 78.5 (69.5)

Proposed method 89.8 (80.5) 82.2 (83.4) 87.1 (84.7) 85.8 (76.2) 81.8 (72.6)

In the present study, not only were the accuracy of extraversion and openness improved,
but UA recalls were also increased more than before. This evidences that the performance
and robustness of trained models are highly dependent on their hyper-parameter settings.

7. Conclusions

Since HPT is the most challenging aspect of ANN studies, it is mostly obtained by
trial-and-error, affecting its performance. This article proposed a new approach based on
cultural evolution and parallel computing to achieve a near-optimal structure of SAAE in a
reasonable time for automatic personality perception. We used the concept of parallelism
and information on different regions of the search space to improve the search spaces
in MIC and exchanged them between islands to provide greater population diversity.
The proposed approach was implemented on three complex benchmarks, and six criteria
evaluated our method’s performance in comparison with four basic optimization methods.
The results showed that our approach outperforms other traditional optimization and newly
published algorithms in four aspects: (1) convergence speed, (2) precision, (3) escaping
from entrapment in local optima, and (4) repeatability. As an indication of our method’s
performance, we increased the problem complexity by increasing the number of variables
up to 30. The outcomes demonstrated the reliability of the MIC method, especially LM
and EM. Subsequently, five hyper-parameters of SAAE were optimized. Since the tuning of
hyper-parameters affects over-fitting and under-fitting, we introduced a new cost function
to control them during the optimization process.

In comparison with the results of our previous published work, the outcomes of ap-
plying MIC to SAAE indicated 3.3% (3.1%) for consciousness, 5.1% (7.5%) for agreeableness,
5.9% (14.3%) for openness, 5.6% (10.1%) for extraversion, and 12.7% (3.6%) for neuroticism.

Author Contributions: Writing—review & editing, E.J.Z., M.T., A.K., C.H., M.V., N.N. and T.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Sensors 2022, 22, 6206 20 of 22

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.-L. Hyperparam-

eter optimization: Foundations, algorithms, best practices and open challenges. arXiv 2021, arXiv:107.05847.
2. Szepannek, G.; Lübke, K. Explaining Artificial Intelligence with Care. In KI-Künstliche Intell.; 2022; Volume 16, pp. 1–10. [CrossRef]
3. Khodadadian, A.; Parvizi, M.; Teshnehlab, M.; Heitzinger, C. Rational Design of Field-Effect Sensors Using Partial Differential

Equations, Bayesian Inversion, and Artificial Neural Networks. Sensors 2022, 22, 4785. [CrossRef]
4. Guo, C.; Li, L.; Hu, Y.; Yan, J. A Deep Learning Based Fault Diagnosis Method With hyperparameter Optimization by Using

Parallel Computing. IEEE Access 2020, 8, 131248–131256. [CrossRef]
5. Feurer, M.; Hutter, F. Hyperparameter optimization. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 3–33.
6. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,

415, 295–316. [CrossRef]
7. Wu, D.; Wu, C. Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products

with Multiple Time Windows. Agriculture 2022, 12, 793. [CrossRef]
8. Peng, Y.; Gong, D.; Deng, C.; Li, H.; Cai, H.; Zhang, H. An automatic hyperparameter optimization DNN model for precipitation

prediction. Appl. Intell. 2021, 52, 2703–2719. [CrossRef]
9. Yi, H.; Bui, K.-H.N. An automated hyperparameter search-based deep learning model for highway traffic prediction. IEEE Trans.

Intell. Transp. Syst. 2020, 22, 5486–5495. [CrossRef]
10. Kinnewig, S.; Kolditz, L.; Roth, J.; Wick, T. Numerical Methods for Algorithmic Systems and Neural Networks; Institut für Angewandte

Mathematik, Leibniz Universität Hannover: Hannover, Germany, 2022. [CrossRef]
11. Han, J.-H.; Choi, D.-J.; Park, S.-U.; Hong, S.-K. Hyperparameter optimization using a genetic algorithm considering verification

time in a convolutional neural network. J. Electr. Eng. Technol. 2020, 15, 721–726. [CrossRef]
12. Yao, R.; Guo, C.; Deng, W.; Zhao, H. A novel mathematical morphology spectrum entropy based on scale-adaptive techniques.

ISA Trans. 2022, 126, 691–702. [CrossRef] [PubMed]
13. Raji, I.D.; Bello-Salau, H.; Umoh, I.J.; Onumanyi, A.J.; Adegboye, M.A.; Salawudeen, A.T. Simple deterministic selection-based

genetic algorithm for hyperparameter tuning of machine learning models. Appl. Sci. 2022, 12, 1186. [CrossRef]
14. Harichandana, B.; Kumar, S. LEAPMood: Light and Efficient Architecture to Predict Mood with Genetic Algorithm driven

Hyperparameter Tuning. In Proceedings of the 2022 IEEE 16th International Conference on Semantic Computing (ICSC), Laguna
Hills, CA, USA, 26–28 January 2022; pp. 1–8.

15. Guido, R.; Groccia, M.C.; Conforti, D. Hyper-Parameter Optimization in Support Vector Machine on Unbalanced Datasets Using
Genetic Algorithms. In Optimization in Artificial Intelligence and Data Sciences; Springer: Berlin/Heidelberg, Germany, 2022; pp. 37–47.

16. Thavasimani, K.; Srinath, N.K. Hyperparameter optimization using custom genetic algorithm for classification of benign and
malicious traffic on internet of things-23 dataset. Int. J. Electr. Comput. Eng. 2022, 12, 4031–4041. [CrossRef]

17. Awad, M. Optimizing the Topology and Learning Parameters of Hierarchical RBF Neural Networks Using Genetic Algorithms.
Int. J. Appl. Eng. Res. 2018, 13, 8278–8285.

18. Faris, H.; Mirjalili, S.; Aljarah, I. Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer
based on a hybrid encoding scheme. Int. J. Mach. Learn. Cybern. 2019, 10, 2901–2920. [CrossRef]

19. Li, A.; Spyra, O.; Perel, S.; Dalibard, V.; Jaderberg, M.; Gu, C.; Budden, D.; Harley, T.; Gupta, P. A generalized framework for
population based training. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1791–1799.

20. Luo, G. A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model.
Anal. Health Inform. Bioinform. 2016, 5, 18. [CrossRef]

21. An, Z.; Wang, X.; Li, B.; Xiang, Z.; Zhang, B. Robust visual tracking for UAVs with dynamic feature weight selection. Appl. Intell. 2022.
[CrossRef]

22. Bhandare, A.; Kaur, D. Designing convolutional neural network architecture using genetic algorithms. Int. J. Adv. Netw. Monit.
Control 2021, 6, 26–35. [CrossRef]

23. Tan, H.H.; Lim, K.H. Vanishing gradient mitigation with deep learning neural network optimization. In Proceedings of the 2019
7th International Conference on Smart Computing & Communications (ICSCC), Sarawak, Malaysia, 28–30 June 2019; pp. 1–4.

24. Zaferani, E.J.; Teshnehlab, M.; Vali, M. Automatic Personality Traits Perception Using Asymmetric Auto-Encoder. IEEE Access
2021, 9, 68595–68608. [CrossRef]

25. Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; Rhee, W. Basic enhancement strategies when using bayesian optimization for
hyperparameter tuning of deep neural networks. IEEE Access 2020, 8, 52588–52608. [CrossRef]

http://doi.org/10.1007/s13218-022-00764-8
http://doi.org/10.3390/s22134785
http://doi.org/10.1109/ACCESS.2020.3009644
http://doi.org/10.1016/j.neucom.2020.07.061
http://doi.org/10.3390/agriculture12060793
http://doi.org/10.1007/s10489-021-02507-y
http://doi.org/10.1109/TITS.2020.2987614
http://doi.org/10.15488/11897
http://doi.org/10.1007/s42835-020-00343-7
http://doi.org/10.1016/j.isatra.2021.07.017
http://www.ncbi.nlm.nih.gov/pubmed/34446283
http://doi.org/10.3390/app12031186
http://doi.org/10.11591/ijece.v12i4.pp4031-4041
http://doi.org/10.1007/s13042-018-00913-2
http://doi.org/10.1007/s13721-016-0125-6
http://doi.org/10.1007/s10489-022-03719-6
http://doi.org/10.21307/ijanmc-2021-024
http://doi.org/10.1109/ACCESS.2021.3076820
http://doi.org/10.1109/ACCESS.2020.2981072

Sensors 2022, 22, 6206 21 of 22

26. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Lv, J. Automatically designing CNN architectures using the genetic algorithm for image
classification. IEEE Trans. Cybern. 2020, 50, 3840–3854. [CrossRef]

27. Cabada, R.Z.; Rangel, H.R.; Estrada, M.L.B.; Lopez, H.M.C. Hyperparameter optimization in CNN for learning-centered emotion
recognition for intelligent tutoring systems. Soft Comput. 2020, 24, 7593–7602. [CrossRef]

28. Deng, W.; Liu, H.; Xu, J.; Zhao, H.; Song, Y. An improved quantum-inspired differential evolution algorithm for deep belief
network. IEEE Trans. Instrum. Meas. 2020, 69, 7319–7327. [CrossRef]

29. Guo, Y.; Li, J.-Y.; Zhan, Z.-H. Efficient hyperparameter optimization for convolution neural networks in deep learning: A
distributed particle swarm optimization approach. Cybern. Syst. 2020, 52, 36–57. [CrossRef]

30. Ozcan, T.; Basturk, A. Static facial expression recognition using convolutional neural networks based on transfer learning and
hyperparameter optimization. Multimed. Tools Appl. 2020, 79, 26587–26604. [CrossRef]

31. Gülcü, A.; Kuş, Z. Hyper-parameter selection in convolutional neural networks using microcanonical optimization algorithm.
IEEE Access 2020, 8, 52528–52540. [CrossRef]

32. Kong, D.; Wang, S.; Ping, P. State-of-health estimation and remaining useful life for lithium-ion battery based on deep learning
with Bayesian hyperparameter optimization. Int. J. Energy Res. 2022, 46, 6081–6098. [CrossRef]

33. Chowdhury, A.A.; Hossen, M.A.; Azam, M.A.; Rahman, M.H. Deepqgho: Quantized greedy hyperparameter optimization in
deep neural networks for on-the-fly learning. IEEE Access 2022, 10, 6407–6416. [CrossRef]

34. Chen, H.; Miao, F.; Chen, Y.; Xiong, Y.; Chen, T. A hyperspectral image classification method using multifeature vectors and
optimized KELM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2781–2795. [CrossRef]

35. Phan, L.V.; Rauthmann, J.F. Personality computing: New frontiers in personality assessment. Soc. Personal. Psychol. Compass 2021,
15, e12624. [CrossRef]

36. Koutsombogera, M.; Sarthy, P.; Vogel, C. Acoustic Features in Dialogue Dominate Accurate Personality Trait Classification. In Proceedings
of the 2020 IEEE International Conference on Human-Machine Systems (ICHMS), Rome, Italy, 7–9 September 2020; pp. 1–3.

37. Aslan, S.; Güdükbay, U.; Dibeklioğlu, H. Multimodal assessment of apparent personality using feature attention and error
consistency constraint. Image Vis. Comput. 2021, 110, 104163. [CrossRef]

38. Xu, J.; Tian, W.; Lv, G.; Liu, S.; Fan, Y. Prediction of the Big Five Personality Traits Using Static Facial Images of College Students
With Different Academic Backgrounds. IEEE Access 2021, 9, 76822–76832. [CrossRef]

39. Kampman, O.; Siddique, F.B.; Yang, Y.; Fung, P. Adapting a virtual agent to user personality. In Advanced Social Interaction with
Agents; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–118.

40. Suen, H.-Y.; Hung, K.-E.; Lin, C.-L. Intelligent video interview agent used to predict communication skill and perceived personality
traits. Hum.-Cent. Comput. Inf. Sci. 2020, 10, 1–12. [CrossRef]

41. Liam Kinney, A.W.; Zhao, J. Detecting Personality Traits in Conversational Speech. Stanford University: Stanford, CA, USA, 2017;
Available online: https://web.stanford.edu/class/cs224s/project/reports_2017/Liam_Kinney.pdf (accessed on 15 June 2022).

42. Jalaeian Zaferani, E.; Teshnehlab, M.; Vali, M. Automatic personality recognition and perception using deep learning and
supervised evaluation method. J. Appl. Res. Ind. Eng. 2022, 9, 197–211.

43. Mohammadi, G.; Vinciarelli, A.; Mortillaro, M. The voice of personality: Mapping nonverbal vocal behavior into trait attributions.
In Proceedings of the 2nd international workshop on Social signal processing, Firenze, Italy, 29 October 2010; pp. 17–20.

44. Rosenberg, A. Speech, Prosody, and Machines: Nine Challenges for Prosody Research. In Proceedings of the 9th International
Conference on Speech Prosody 2018, Poznań, Poland, 13–16 June 2018; pp. 784–793.

45. Junior, J.C.S.J.; Güçlütürk, Y.; Pérez, M.; Güçlü, U.; Andujar, C.; Baró, X.; Escalante, H.; Guyon, I.; van Gerven, M.; van Lier, R.
First impressions: A survey on computer vision-based apparent personality trait analysis. arXiv 2019, arXiv:1804.08046v1.

46. Schuller, B.; Weninger, F.; Zhang, Y.; Ringeval, F.; Batliner, A.; Steidl, S.; Eyben, F.; Marchi, E.; Vinciarelli, A.; Scherer, K. Affective and
behavioural computing: Lessons learnt from the first computational paralinguistics challenge. Comput. Speech Lang. 2019, 53, 156–180.
[CrossRef]

47. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer: Berlin/Heidelberg,
Germany, 2019.

48. Harada, T.; Alba, E. Parallel genetic algorithms: A useful survey. ACM Comput. Surv. 2020, 53, 1–39. [CrossRef]
49. Chentoufi, M.A.; Ellaia, R. A novel multi-population passing vehicle search algorithm based co-evolutionary cultural algorithm.

Comput. Sci. 2021, 16, 357–377.
50. Liu, Z.-H.; Tian, S.-L.; Zeng, Q.-L.; Gao, K.-D.; Cui, X.-L.; Wang, C.-L. Optimization design of curved outrigger structure based on

buckling analysis and multi-island genetic algorithm. Sci. Prog. 2021, 104, 368504211023277. [CrossRef]
51. Shah, P.; Kobti, Z. Multimodal fake news detection using a Cultural Algorithm with situational and normative knowledge. In

Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–7.
52. Al-Betar, M.A.; Awadallah, M.A.; Doush, I.A.; Hammouri, A.I.; Mafarja, M.; Alyasseri, Z.A.A. Island flower pollination algorithm

for global optimization. J. Supercomput. 2019, 75, 5280–5323. [CrossRef]
53. Sun, Y.; Zhang, L.; Gu, X. A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global

optimization problems. Neurocomputing 2012, 98, 76–89. [CrossRef]
54. da Silva, D.J.A.; Teixeira, O.N.; de Oliveira, R.C.L. Performance Study of Cultural Algorithms Based on Genetic Algorithm with Single and

Multi Population for the MKP. Bio-Inspired Computational Algorithms and Their Applitions; IntechOpen: London, UK, 2012; pp. 385–404.

http://doi.org/10.1109/TCYB.2020.2983860
http://doi.org/10.1007/s00500-019-04387-4
http://doi.org/10.1109/TIM.2020.2983233
http://doi.org/10.1080/01969722.2020.1827797
http://doi.org/10.1007/s11042-020-09268-9
http://doi.org/10.1109/ACCESS.2020.2981141
http://doi.org/10.1002/er.7548
http://doi.org/10.1109/ACCESS.2022.3141781
http://doi.org/10.1109/JSTARS.2021.3059451
http://doi.org/10.1111/spc3.12624
http://doi.org/10.1016/j.imavis.2021.104163
http://doi.org/10.1109/ACCESS.2021.3076989
http://doi.org/10.1186/s13673-020-0208-3
https://web.stanford.edu/class/cs224s/project/reports_2017/Liam_Kinney.pdf
http://doi.org/10.1016/j.csl.2018.02.004
http://doi.org/10.1145/3400031
http://doi.org/10.1177/00368504211023277
http://doi.org/10.1007/s11227-019-02776-y
http://doi.org/10.1016/j.neucom.2011.08.043

Sensors 2022, 22, 6206 22 of 22

55. Zhao, X.; Tang, Z.; Cao, F.; Zhu, C.; Periaux, J. An Efficient Hybrid Evolutionary Optimization Method Coupling Cultural
Algorithm with Genetic Algorithms and Its Application to Aerodynamic Shape Design. Appl. Sci. 2022, 12, 3482. [CrossRef]

56. Muhamediyeva, D. Fuzzy cultural algorithm for solving optimization problems. J. Phys. Conf. Ser. 2020, 1441, 012152. [CrossRef]
57. Xu, W.; Wang, R.; Zhang, L.; Gu, X. A multi-population cultural algorithm with adaptive diversity preservation and its application

in ammonia synthesis process. Neural Comput. Appl. 2012, 21, 1129–1140. [CrossRef]
58. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.

[CrossRef] [PubMed]
59. Cho, K.H.; Raiko, T.; Ilin, A. Gaussian-bernoulli deep boltzmann machine. In Proceedings of the 2013 International Joint

Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–7.
60. Ogawa, S.; Mori, H. A gaussian-gaussian-restricted-boltzmann-machine-based deep neural network technique for photovoltaic

system generation forecasting. IFAC-Pap. 2019, 52, 87–92. [CrossRef]
61. Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190.

[CrossRef]
62. Jamil, M.; Yang, X.-S. A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer.

Optim. 2013, 4, 150–194. [CrossRef]
63. Mohammadi, G.; Vinciarelli, A. Automatic personality perception: Prediction of trait attribution Based Prosodic Features. IEEE

Trans. Affect. Comput. 2012, 3, 273–284. [CrossRef]
64. Chastagnol, C.; Devillers, L. Personality traits detection using a parallelized modified SFFS algorithm. Computing 2012, 15, 16.
65. Mohammadi, G.; Vinciarelli, A. Automatic personality perception: Prediction of trait attribution based on prosodic features

extended abstract. In Proceedings of the 2015 International Conference on Affective Computing and Intelligent Interaction (ACII),
Xi’an, China, 21–24 September 2015; pp. 484–490.

66. Solera-Ureña, R.; Moniz, H.; Batista, F.; Cabarrão, R.; Pompili, A.; Astudillo, R.; Campos, J.; Paiva, A.; Trancoso, I. A semi-
supervised learning approach for acoustic-prosodic personality perception in under-resourced domains. In Proceedings of the
18th Annual Conference of the International Speech Communication Association, INTERSPEECH 2017, Stockholm, Sweden,
20–24 August 2017; pp. 929–933.

67. Carbonneau, M.-A.; Granger, E.; Attabi, Y.; Gagnon, G. Feature learning from spectrograms for assessment of personality traits.
IEEE Trans. Affect. Comput. 2017, 11, 25–31. [CrossRef]

68. Liu, Z.-T.; Rehman, A.; Wu, M.; Cao, W.; Hao, M. Speech personality recognition based on annotation classification using
log-likelihood distance and extraction of essential audio features. IEEE Trans. Multimed. 2020, 23, 3414–3426. [CrossRef]

http://doi.org/10.3390/app12073482
http://doi.org/10.1088/1742-6596/1441/1/012152
http://doi.org/10.1007/s00521-011-0749-5
http://doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://doi.org/10.1016/j.ifacol.2019.08.160
http://doi.org/10.3233/AIC-170729
http://doi.org/10.1504/IJMMNO.2013.055204
http://doi.org/10.1109/T-AFFC.2012.5
http://doi.org/10.1109/TAFFC.2017.2763132
http://doi.org/10.1109/TMM.2020.3025108

	Introduction
	Related Works
	Hyper-Parameter Tuning in ML
	Automatic Personality Perception

	Dataset
	Feature Extraction
	Proposed Method
	The Proposed Optimization Method
	Stacked Asymmetric Auto-Encoder HPO Using MIC

	Simulations and Results
	The Results of the MIC on Three Optimization Benchmarks
	The Results of Personality Perception with The MIC Method

	Conclusions
	References

