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EXISTENCE AND LOCAL UNIQUENESS FOR 3D

SELF-CONSISTENT MULTISCALE MODELS OF FIELD-EFFECT

SENSORS∗

STEFAN BAUMGARTNER† AND CLEMENS HEITZINGER‡

Abstract. We present existence and local uniqueness theorems for a system of partial differ-
ential equations modeling field-effect nano-sensors. The system consists of the Poisson(-Boltzmann)
equation and the drift-diffusion equations coupled with a homogenized boundary layer. The exis-
tence proof is based on the Leray-Schauder fixed-point theorem and a maximum principle is used to
obtain a-priori estimates for the electric potential, the electron density, and the hole density. Local
uniqueness around the equilibrium state is obtained from the implicit-function theorem. Due to
the multiscale problem inherent in field-effect biosensors, a homogenized equation for the potential
with interface conditions at a surface is used. These interface conditions depend on the surface-
charge density and the dipole-moment density in the boundary layer and still admit existence and
local uniqueness of the solution when certain conditions are satisfied. Due to the geometry and the
boundary conditions of the physical system, the three-dimensional case must be considered in sim-
ulations. Therefore a finite-volume discretization of the 3d self-consistent model was implemented
to allow comparison of simulation and measurement. Special considerations regarding the imple-
mentation of the interface conditions are discussed so that there is no computational penalty when
compared to the problem without interface conditions. Numerical simulation results are presented
and very good quantitative agreement with current-voltage characteristics from experimental data
of biosensors is found.
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1. Introduction

The objective of this work is to prove existence and local uniqueness of the so-
lution of a system of partial differential equations that models field-effect sensors
such as BioFETs (biologically sensitive field-effect transistors) and gas sensors in a
self-consistent manner.

Field-effect biosensors have been realized in experiments using silicon nanowires
in recent years [1–5]. Field-effect gas sensors [6–8] based on tin-oxide nanowires have
been demonstrated as well. The basic working principle of BioFETs (see Figure 1.1)
is that the binding of analyte molecules in a liquid to receptor molecules bound at
the sensor surface changes the charge concentration at this surface. This affects the
electrostatic potential in the semiconducting nanowire and the resulting conductance
change is measured. The main advantage of these biosensors compared to current tech-
nology is label-free operation, i.e., no fluorescent or radioactive markers are needed.
Furthermore, they provide high sensitivity, real-time operation, and high selectivity.
The range of applications includes biomedicine, biotechnology, food and drug indus-
tries, environmental monitoring, and process technology.
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Fig. 1.1. Schematic cross section through the biosensor. The boundary conditions are Dirichlet
boundary conditions at the top, at the bottom, and at the contacts of the nanowire (not shown) and
zero Neumann boundary conditions everywhere else.

In the case of gas sensors, reducing or oxidizing gases react with the surface
of the nanowire in reactions that are not fully understood. These reactions result
in charge transfer from or to the nanowire surface. Again, this change in charge
concentration of the nanowire modulates the current through the semiconducting
nanowire. Applications include the detection of toxic gases such as CO and H2S.

Despite the experimental progress, the detection mechanisms are not completely
understood quantitatively and PDE models are important in order to gain insight
into the physics and the behavior of such sensing devices and to help in their rational
design.

Therefore a self-consistent model that accounts for the various free charge carri-
ers is essential for field-effect sensors. The model discussed here is based on earlier
work [9,10] and the geometry is based on experimental structures [2,11]. The simula-
tion domain consists of three subdomains with different physical properties and hence
different model equations. The first subdomain ΩSi consists of the (silicon) nanowire
and acts as the transducer of the sensor; in this subdomain, the drift-diffusion equa-
tions are used to model charge transport. The semiconductor is coated with a di-
electric layer which comprises the second subdomain Ωox where the Poisson equation
holds. In the third domain Ωliq — the aqueous solution containing cations and anions
— the Poisson-Boltzmann equation holds. Due to the geometry and the boundary
conditions used in experiments, three-dimensional simulations are necessary.

The boundary layer at the sensor surface is responsible for recognition of the
analyte molecules and requires special attention. In the case of biosensors, solv-
ing a homogenization problem gives rise to two interface conditions for the Poisson
equation. These interface conditions depend on the surface-charge density and the
dipole-moment density of the boundary layer [10, 12]. In the case of gas sensors, the
model for the surface charge is a system of ODEs that models surface reactions [13].
Both of these surface models are included in the following and consequently the results
hold for both bio- and gas sensors.
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This paper is organized as follows. In Section 2, the model equations are described
in detail and the main result is stated. In Section 3, the existence of solutions of semi-
linear elliptic problems with interface conditions is shown. Based on these lemmata,
the existence of solutions of the model equations is proved in Section 4. Furthermore,
in Section 5, we show local uniqueness of the solution around the equilibrium state,
i.e., when the applied voltages are small enough. A discretization that retains the
band structure of the problem without interface conditions is given in Section 6 so
that numerical solutions can be calculated as fast as for the problem without interface
conditions. Numerical results are shown in Section 7 and compared to experimental
data. Finally Section 8 concludes the paper.

2. The model equations and statement of the main result

In this section, the self-consistent model is presented and the main result is stated.
The domain Ω⊂R

3 is partitioned into three subdomains ΩSi (silicon), Ωox (oxide),
and Ωliq (liquid), and an interface Γ between Ωox and Ωliq (see Figure 1.1).

2.1. Homogenization and interface conditions. The fast varying spa-
tial structure of the charge concentration in the boundary layer between the aqueous
solution and the dielectric layer (shown red in Figure 1.1) gives rise to a multiscale
problem which has been solved by a homogenization method [10]. This interface Γ
splits the domain Ω⊂R

3 into two parts Ω+ and Ω−. For the sake of notational sim-
plicity, we assume that the normal vector of the interface Γ points in the positive
x-direction and is located at x=0; the coordinates parallel to the interface are de-
noted by y. The idea is to replace the fast varying charge concentration by interface
conditions that depend only on the slow variable.

Before homogenization, the boundary-value problem is

−∇·(A∇Vε)=ρε in Ω,

Vε(0+,y)=Vε(0−,y) on Γ,

A(0+)∂xVε(0+,y)=A(0−)∂xVε(0−,y) on Γ,

where ρε is a charge concentration that varies fast in Ω+ near Γ, Vε is the electrostatic
potential, and A is the permittivity. The jump in the permittivity A gives rise to two
continuity conditions: the continuity of the potential (the second equation of the
system) and the continuity of the electric displacement field (the third equation).

The idea of the homogenization procedure is to compare the weak formulations
of two problems: the first problem is the original problem above and the second, the
homogenized problem, contains general interface conditions, but not the fast varying
charge concentration. At the end of the procedure, the interface conditions are found
by comparing the coefficients of the test function and its normal derivative with respect
to the interface; since it is a second order problem, there are two interface conditions.

In summary, after homogenization, i.e., after ε→0+, the original boundary-value
problem above becomes the homogenized boundary-value problem [10]

−∇·(A∇V )=0 in Ω+, (2.1a)

−∇·(A∇V )=ρ in Ω−, (2.1b)

V (0+,y)−V (0−,y)=α(y) on Γ, (2.1c)

A(0+)∂xV (0+,y)−A(0−)∂xV (0−,y)=γ(y) on Γ. (2.1d)

Here α is the macroscopic dipole-moment density and γ is the macroscopic surface-
charge density of the boundary layer. The values of α and γ contain the cumulative
effect of the fast varying charge concentration ρε, but depend only on the slow variable.
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A rigorous calculation of the microscopic charge interactions in the boundary
layer has been realized by a Monte-Carlo algorithm in [14], from which the values
of α and γ are obtained immediately.

2.2. The charge-transport model. The model is self-consistent; more
precisely, the system of equations has the structure

V =V (n,p,α,γ),

n=n(V,p),

p=p(V,n),

α=Mα(V ),

γ=Mγ(V ),

where n and p are the electron and hole concentrations in ΩSi, respectively. In ΩSi, V ,
n, and p are the solutions of the drift-diffusion equations [15–18]. The values α and γ of
the interface conditions are given by microscopic models Mα and Mγ for the surface-
charge density and dipole-moment density of the boundary layer. They generally
depend on the electrostatic potential and usually on the electrostatic potential close
to the boundary layer. The microscopic models Mα and Mγ have been realized,
e.g., by Monte-Carlo simulations [14], by Poisson-Boltzmann calculations [19], or by
systems of ordinary differential equations for surface reactions [13].

The latter case is relevant for gas sensors and the surface charge is computed from
the solutions of systems of ODEs that govern the chemical reactions. These systems
of ODEs have bounded C1 solutions global in time. In the case of SnO2 based sensors
in the presence of oxygen and a reducing gas such as CO, the chemisorption and
ionization at the surface can be described by the system

dNO

dt
=k1([S]−NO−NS)[O2]

1/2−k−1NO−
dNS

dt
,

dNS

dt
=k2nsNO−k−2NS ,

where NO denotes the neutral-adsorbed-oxygen density, NS is the ionized-oxygen
density, and the ki are the rate constants of the surface processes, while [S] is the
local adsorption-site density and [O2] is the oxygen concentration [13]. Furthermore
the electron concentration ns corresponds to the surface-charge density Mγ(V ), and
the dipole moment densityMα(V ) vanishes in the case of gas sensors since the distance
from the surface is zero. Of course, there are many more systems of ODEs that are
relevant for the modeling of gas sensors.

The charge transport in the semiconducting nanowire can be calculated by special
models for confined structures [20–22]. In this work, the charge-transport equations
in ΩSi that yield the carrier concentrations n and p are the drift-diffusion-Poisson
system

−∇·(A∇V )= q(p−n+Cdop), (2.2a)

∇·Jn=R, (2.2b)

∇·Jp=−R, (2.2c)

Jn=Dn∇n−µnn∇V, (2.2d)

Jp=−Dp∇p−µpp∇V, (2.2e)
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where q is the elementary charge, Cdop is the doping concentration of the semiconduc-
tor, Dn and Dp are the diffusion coefficients of the charge carriers, µn and µp are their
carrier mobilities, Jn and Jp are the current densities, and R is the recombination
rate. The Shockley-Read-Hall recombination rate is defined as

R :=
np−n2

i

τp(n+ni)+τn(p+ni)
, (2.3)

where ni is the intrinsic charge density and τn and τp are the lifetimes of the free
carriers. Furthermore we assume that the Einstein relations Dn=UTµn and Dp=
UTµp hold, where UT is the thermal voltage. In the Slotboom variables u and v,
which are defined by

n=:nie
V/UT u,

p=:nie
−V/UT v,

the system (2.2) becomes

−∇·(A∇V )= qni(e
−V/UT v−eV/UT u)+qCdop,

UTni∇·(µne
V/UT∇u)=ni

uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
,

UTni∇·(µpe
−V/UT∇v)=ni

uv−1

τp(eV/UT u+1)+τn(e−V/UT v+1)
.

The boundary is partitioned into Dirichlet and Neumann boundaries. The Dirich-
let conditions

V |∂ΩD
=VD, u|∂ΩSi,D

=uD, v|∂ΩSi,D
=vD

hold at the ohmic contacts ∂ΩSi,D, which are located at the source and drain contacts
of the semiconductor. For details about the boundary conditions at the ohmic contacts
the reader is referred to [16]. A voltage across the simulation domain in the vertical
direction can be applied as well, i.e., an electrode in the liquid and a back-gate contact
at the bottom of the structure are also part of ∂ΩD. The zero Neumann conditions

∇νV |∂ΩN
=0, ∇νu|∂ΩSi,N

=0, ∇νv|∂ΩSi,N
=0

hold on the Neumann part ∂ΩN of the boundary.

2.3. The liquid. The equation for the aqueous solution Ωliq is the Poisson-
Boltzmann model

−∇·(A∇V )=
∑

σ

σηe−σβ(V−Φ),

where η is the ionic concentration, the constant β is defined as β := q/(kT ) in terms
of the Boltzmann constant k and the temperature T , and Φ is the Fermi level. The
right-hand side is a sum over the valences σ of all ion species; for example, the index
set σ∈{−1,+1} corresponds to a 1:1 electrolyte such as Na+Cl−. In this case, the
equation simplifies to

−∇·(A∇V )=−2η sinh(β(V −Φ)).
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2.4. The model equations. In summary, the model is the boundary-value
problem

−∇·(A∇V )= qCdop−qni(e
V/UT u−e−V/UT v) in ΩSi,

(2.4a)

−∇·(A∇V )=0 in Ωox,
(2.4b)

−∇·(A∇V )=−2η sinh(β(V −Φ)) in Ωliq,
(2.4c)

V (0+,y)−V (0−,y)=α on Γ,
(2.4d)

A(0+)∂xV (0+,y)−A(0−)∂xV (0−,y)=γ on Γ,
(2.4e)

UTni∇·(µne
V/UT∇u)=ni

uv−1
τp(eV/UT u+1)+τn(e−V/UT v+1)

in ΩSi,

(2.4f)

UTni∇·(µpe
−V/UT∇v)=ni

uv−1
τp(eV/UT u+1)+τn(e−V/UT v+1)

in ΩSi,

(2.4g)

α=Mα(V ) on Γ,
(2.4h)

γ=Mγ(V ) on Γ,
(2.4i)

V =VD on ∂ΩD,
(2.4j)

u=uD, v=vD on ∂ΩD,Si,
(2.4k)

∇νV =0 on ∂ΩN ,
(2.4l)

∇νu=0, ∇νv=0 on ∂ΩN,Si.
(2.4m)

2.5. Statement of the main result. In order to state the main result,
the coefficients and boundary conditions in the boundary-value problem (2.4) have to
satisfy the following assumptions.

Assumptions 2.1.

(i) The bounded domain Ω⊂R
3 has a C2 Dirichlet boundary ∂ΩD, the Neumann

boundary ∂ΩN consists of C2 segments, and the Lebesgue measure of the Dirich-
let boundary ∂ΩD is nonzero.
The C2 hypersurface Γ⊂Ω splits the domain Ω into two nonempty domains Ω+

and Ω− so that meas(Γ∩∂Ω)=0 and Γ∩∂Ω⊂∂ΩN hold.

(ii) The coefficient functions A, µn, and µp are uniformly elliptic and bounded with
A|Ω+ ∈C1(Ω+,R3×3), A|Ω− ∈C1(Ω−,R3×3), and µn,µp∈C1(ΩSi,R

3×3).
For the data, the inclusions f ∈L∞(Ω), VD ∈H1/2(∂ΩD)∩L∞(Γ), and uD,vD ∈
H1/2(∂ΩD) hold.
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(iii) The doping concentration Cdop(x) is bounded above and below and we define

C := inf
x∈Ω

Cdop(x)≤C(x)≤ sup
x∈Ω

Cdop(x)=:C.

(iv) There is a constant K≥1 satisfying

1

K
≤uD(x),vD(x)≤K ∀x∈∂ΩD.

(v) The microscopic models Mα and Mγ depend continuously in H1(Ω) on the po-
tential V , and for every potential V in H1(Ω)∩L∞(Ω), the inclusions α(y)=
Mα(V )∈H1/2(Γ)∩L∞(Γ) and γ(y)=Mγ(V )∈L∞(Γ) hold.

Using these assumptions, we can state the main result.

Theorem 2.2 (Existence). Under Assumptions 2.1, there exists a solution

(V,u,v,α,γ)∈
(
H1(Ω\Γ)∩L∞(Ω\Γ)

)
×
(
H1(ΩSi)∩L∞(ΩSi)

)2
×
(
H1(Γ)∩L∞(Γ)

)2

of the boundary-value problem (2.4), and it satisfies the L∞-estimate

1

K
≤u(x) ≤K in ΩSi,

1

K
≤v(x) ≤K in ΩSi,

V ≤V (x)≤V in Ω,

where

V :=min

(
inf
∂ΩD

VD,Φ−sup
Ω

VL,UT ln
( 1

2Kni

(
C+

√
C2+4n2

i

))
−sup

Ω
VL

)
,

V :=max

(
sup
∂ΩD

VD,Φ− inf
Ω
VL,UT ln

( K

2ni

(
C+

√
C

2
+4n2

i

))
− inf

Ω
VL

)
,

and where VL is the solution of the linear equation in Lemma 3.1, for which the
estimate

‖VL‖H1(Ω)≤C(‖γ‖L2(Γ)+‖VD‖H1/2(∂Ω)+‖α‖H1/2(Γ))

holds.

The existence of solutions will be shown by applying the Schauder fixed-point
theorem similarly to [16] for the drift-diffusion equations. It is also known that solu-
tions of the nonlinear Poisson-Boltzmann equation exist. The main issue of our model
is how to treat the different equations on a single domain and how the interface con-
ditions (2.1c) and (2.1d) influence estimates of the solutions. As aforementioned, the
interface conditions are jumps in the potential V and in the field −∂xV . The size of
the jumps depends on the values of α and γ; large values of α or γ result in large ab-
solute values of the potential. The influence of the interface conditions on semilinear
elliptic problems will be discussed in the following section. Based on the lemmata in
the following section, the main result will be proved in Section 4.
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3. Semilinear problems including interface conditions

In the proof of the existence result, we will need two lemmata. The first one is
concerned with linear elliptic problems with jumps of the form (2.1) and the second
one yields the existence and uniqueness of a solution of semilinear elliptic problems
including jumps. An a-priori estimate is provided as well.

In the following, Γ⊂R
d will be a C2 hypersurface in the domain Ω which splits

the domain and its boundary into two parts Ω+ and Ω−. Here, for the sake of
notational simplicity, we denote the one-dimensional coordinate orthogonal to Γ by x
and the remaining (d−1)-dimensional coordinates by y. Consequently, the notation
u(0+,y) means the limit within Ω+ and u(0−,y) is the corresponding limit within Ω−.
Furthermore, the jump conditions α and γ depend only on the spatial variable y and
not on the potential V as it arises in the iterative structure of the proof of Theorem 2.2.
The Dirichlet part of the boundary is denoted by ∂ΩD and the Neumann part by ∂ΩN .

Lemma 3.1 (Elliptic boundary-value problems with interface conditions). As-
sume that Ω⊂R

d is a bounded domain with a C2 boundary split into two nonempty
domains Ω+ and Ω− by the C2 hypersurface Γ so that meas(Γ∩∂Ω)=0. Suppose
that A with A|Ω+ ∈C1(Ω+,Rd×d) and A|Ω− ∈C1(Ω−,Rd×d) is uniformly elliptic and
that α∈H1/2(Γ), γ∈L2(Γ), f ∈L2(Ω), and uD ∈H1/2(∂ΩD) hold. Suppose further
that ∂Ω∩Γ⊂∂ΩN holds or that the jump α is compatible with the Dirichlet boundary
conditions uD, i.e., uD(0+)−uD(0−)=α holds on ∂ΩD.

Then the boundary-value problem with interface conditions

−∇·(A(x)∇u)=f in Ω\Γ,

u(0+,y)−u(0−,y)=α on Γ,

A(0+)∂xu(0+,y)−A(0−)∂xu(0−,y)=γ on Γ,

∇νu=0 on ∂ΩN ,

u=uD on ∂ΩD

has a unique solution u∈L2(Ω) and u|Ω+ ∈H1(Ω+) and u|Ω− ∈H1(Ω−) hold. Fur-
thermore, the estimate

‖u‖H1(Ω+)+‖u‖H1(Ω−)≤C(‖f‖L2(Ω)+‖γ‖L2(Γ)+‖uD‖H1/2(∂Ω)+‖α‖H1/2(Γ))

holds.
Proof. We extend α∈H1/2(Γ) to α∈L2(Ω) so that α|Γ=α, α|Ω− =0, α|Γ∪Ω+ ∈

H1(Γ∪Ω+), α|∂ΩD
=0, and (∇να)|∂ΩN

=0. Such an extension α can always be found
by solving, e.g., the Laplace equation, since the boundary conditions are smooth
enough. Similarly, we extend uD ∈H1/2(∂Ω) to uD ∈H1(Ω). We define

w :=u−uD−α

so that the first interface condition becomes w(0+)−w(0−)=0 and the Dirichlet
boundary conditions become homogeneous.

Multiplication by test functions v with v|Ω+ ∈H1(Ω+), v|Ω− ∈H1(Ω−), and
v|∂Ω=0 and integration by parts on Ω+ and Ω− yields the weak formulation for
w∈H1

0 (Ω) as

〈A∇w,∇v〉= 〈f,v〉+

∫

Γ

γvds−〈A∇(uD+α),∇v〉,
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where 〈., .〉 denotes the scalar product 〈f,g〉 :=
∫
Ω+ fg+

∫
Ω−

fg and where we have used
the identity

∫

Γ

A(0+)∂xu(0+,y)vdy−

∫

Γ

A(0−)∂xu(0−,y)vdy=

∫

Γ

γvdy.

Since the right-hand side of the weak formulation is a bounded functional, the Lax-
Milgram Theorem yields the assertion.

The extensions uD and α are not unique. Therefore the uniqueness of the so-
lution u must be shown as well. Suppose u1 and u2 are two solutions. We define
u :=u1−u2 and find that u solves the homogeneous problem

−∇·(A(x)∇u)=0 in Ω\Γ,

u(0+,y)−u(0−,y)=0 on Γ,

A(0+)∂xu(0+,y)−A(0−)∂xu(0−,y)=0 on Γ,

∇νu=0 on ∂ΩN ,

u=0 on ∂ΩD,

and hence the maximum principle yields u=u1−u2=0 almost everywhere.
Finally, we show the estimate. The definition of w yields

‖u‖H1(Ω+)≤‖w‖H1(Ω+)+‖uD‖H1(Ω+)+‖α‖H1(Ω+),

‖u‖H1(Ω−)≤‖w‖H1(Ω−)+‖uD‖H1(Ω−)+‖α‖H1(Ω−).

Substituting v=w in the weak formulation and using the uniform ellipticity of A, we
obtain

‖w‖H1(Ω+)+‖w‖H1(Ω−)≤C(‖f‖L2(Ω+)+‖f‖L2(Ω−)+‖γ‖L2(Γ)

+‖uD‖H1(Ω+)+‖α‖H1(Ω+)+‖uD‖H1(Ω−)+‖α‖H1(Ω−)).

Combining these inequalities and using the inequality ‖φ‖H1(Ω)≤C‖φ‖H1/2(∂Ω) [23]
yields the asserted estimate. (Note that C denotes a general constant.)

The estimate allows a physical interpretation. The value γ corresponds to the
presence of charges; therefore f and γ are present in the estimate analogously in the
same norm as ‖f‖L2(Ω) and ‖γ‖L2(Γ), respectively. The value α corresponds to a dipole
moment and results in a shift or jump of the potential; this is similar to a Dirichlet
boundary condition and hence α and uD appear as ‖α‖H1/2(Γ) and ‖uD‖H1/2(∂Ω) in
the same norm. This means that the terms on the right-hand side of the estimate are
consistent with the physical meaning of the problem.

If in Lemma 3.1 the data α, γ, f , and uD are bounded, then the solution u is
bounded as well, i.e., u∈L∞(Ω) (see, e.g., [24]).

Having treated the linear problem with interface conditions, we now consider the
semilinear problem with interface conditions

−∇·(A(x)∇u)+g(x,u)=f in Ω\Γ, (3.1a)

u(0+,y)−u(0−,y)=α on Γ, (3.1b)

A(0+)∂xu(0+,y)−A(0−)∂xu(0−,y)=γ on Γ, (3.1c)

∇νu=0 on ∂ΩN , (3.1d)

u=uD on ∂ΩD. (3.1e)
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We split the solution u into the solution uL of a linear problem and the solution uN

of a nonlinear problem so that

u=uL+uN ,

where uL is the solution of the problem in Lemma 3.1 and uN is the solution of the
boundary-value problem

−∇·(A(x)∇uN )+g(x,uL+uN )=0 in Ω, (3.2a)

∇νuN =0 on ∂ΩN , (3.2b)

uN =uD on ∂ΩD, (3.2c)

which is treated in the following lemma. The use of the Leray-Schauder fixed-point
theorem is similar to [16].

Lemma 3.2 (Semilinear elliptic boundary-value problems with interface condi-
tions). Suppose that Ω, Γ, A, f , uD, α, and γ are as in Lemma 3.1 and additionally
that f , uD, α, and γ are bounded. Suppose further
(i) that the function g(x,u)∈C1(Ω×R) is monotonically increasing in u for all

x∈Ω,
(ii) that there exist functions g

˜
(u) and g̃(u) so that

g
˜
(u)≤g(x,u)≤ g̃(u) ∀x∈Ω ∀u, and

(iii) that the algebraic equations g
˜
(ũ)=0 and g̃(u

˜
)=0 have solutions.

Then there exists a unique solution u=uL+uN of the semilinear elliptic
boundary-value problem with interface conditions (3.1) and uN ∈H1(Ω)∩L∞(Ω)
holds. Furthermore, the solution uN satisfies the estimate

κ≤uN (x)≤λ ∀x∈Ω,

where

κ̃ :=argmaxz

(
g(x,z+sup

Ω
uL)≤0 ∀x∈Ω

)
,

κ :=min(κ̃, inf
∂Ω

uD),

λ̃ :=argminz

(
g(x,z+inf

Ω
uL)≥0 ∀x∈Ω

)
,

λ :=max(λ̃,sup
∂Ω

uD).

Proof. 1. To show the existence and uniqueness, we use a fixed-point theorem
and a maximum principle. First, for the uniqueness of the solution, we assume that
there are two weak solutions u1, u2∈H1(Ω)∩L∞(Ω). We set w :=u1−u2 and find

−∇·(A(x)∇w)+g(x,u1)−g(x,u2)=0 in Ω,

∇νw=0 on ∂ΩN ,

w=0 on ∂ΩD

with

−∇·(A(x)∇w)+g(x,u1)−g(x,u2)=−∇·(A(x)∇w)+∂wg(x,ŵ(x))w=0,
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using the mean-value theorem to find ŵ(x). Since ∂ug(x,ŵ(x))≥0 by assumption, we
can use the maximum principle to conclude that w=0 a.e. Hence the two solutions
are identical a.e.

2. To show the estimate κ≤uN ≤λ, we use a cut-off argument similar to [15,25].
Suppose that uN is a solution. We start by defining

u := (uN −κ)−=min(uN −κ,0),

u := (uN −λ)+=max(uN −λ,0).

Clearly u,u∈H1
0 (Ω), since uN ∈H1(Ω). The weak formulation of the problem (3.2)

is

〈A∇uN ,∇v〉+〈g(x,uL+uN ),v〉=0 ∀v∈H1(Ω),

and we will be able to use u and u as test functions in this equation.
Next, we estimate g on the support of u and u. The support of u is suppu={x∈

Ω |uN (x)≤κ} and the support of u is suppu={x∈Ω |uN (x)≥λ}. By the definitions
of κ̃ and λ̃ and the monotonicity of g, we obtain

g(x,uN +uL)≤g(x,κ̃)≤0 ∀x∈ suppu,

g(x,uN +uL)≥g(x,λ̃)≥0 ∀x∈ suppu.

Due to the last two inequalities, the fact that u≤0 and u≥0 in Ω, and using the
uniform ellipticity of A with constant C, we deduce from the weak formulation that

0≥〈A∇uN ,∇u〉= 〈A∇(uN −κ),∇u〉= 〈A∇(uN −κ)−,∇u〉= 〈A∇u,∇u〉

≥C‖∇u‖2L2(Ω)≥0,

and analogously

0≥〈A∇uN ,∇u〉= 〈A∇(uN −λ),∇u〉= 〈A∇(uN −λ)+,∇u〉= 〈A∇u,∇u〉

≥C‖∇u‖2L2(Ω)≥0.

Therefore ‖∇u‖L2(Ω)=0 and ‖∇u‖L2(Ω)=0 hold. Using the Poincaré inequalities
‖u‖L2 ≤C‖∇u‖L2 and ‖u‖L2 ≤C‖∇u‖L2 , we find u=0 and u=0 a.e., which yields
the asserted estimate.

3. To prove the existence of a solution, we define the cut function

vK(x) :=





K, if K≤v(x),

v(x), if −K≤v(x)≤K,

−K, if v(x)≤−K

for v∈L2(Ω). Obviously, we have vK ∈L∞(Ω). Since uN is bounded by the estimate
in the previous step, K can be chosen large enough so that uN =uK

N .
Next, we define the operator

M : L2(Ω)× [0,1]→L2(Ω)

by M(v,σ)=w, where w is the solution of the boundary-value problem

−∇·(A∇w)+σg(x,uL+vK)=0 in Ω,

w=σuD on ∂ΩD,

∇νw=0 on ∂ΩN .
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Every fixed point of M(.,1) is a solution of the semilinear problem (3.2). Due to the
estimate shown in the previous step, K can be chosen large enough so that −K≤w≤
K holds a.e. in Ω for every fixed point w=M(w,1).

To apply the Leray-Schauder fixed-point theorem, the compactness of M must
be shown. The continuity of M follows from the continuity of the cut function, the
continuous dependence of σg(x,uL+vK) on (v,σ)∈L2(Ω)× [0,1], and the continuous
dependence of the H1 solutions of elliptic equations on L2(Ω) right-hand sides and
H1 boundary data. Furthermore, the range of M is bounded with respect to the
H1 norm, since w is the solution of a linear elliptic equation with the inhomogeneity
g(x,uL+vK) that is bounded because g is bounded as a function of x and both uL

and vK are bounded, i.e., the inequality

‖w‖H1(Ω)≤C(‖σg(.,uL+vK)‖L2(Ω)+‖σuD‖H1/2(∂Ω))

≤C(|Ω|1/2 sup
x∈Ω

|g(x,uL+K)|+‖uD‖H1/2(∂Ω))

holds. We know that H1(Ω) is compactly embedded in L2(Ω) due to the Rellich-
Kondrachov compactness theorem. Since the range of M is bounded, the operator M
is compact.

Finally, the Leray-Schauder fixed-point theorem yields the existence of a fixed
point w of M(.,1) and hence the existence of a solution uN of the original boundary-
value problem.

4. Proof of Theorem 2.2

The following proof of Theorem 2.2 is based on the Schauder fixed-point theorem
and the estimates are deduced from a maximum principle (see Lemma 3.2). The main
idea of the proof follows [15], while the emphasis is on the different fixed-point map
and the different estimates.

1. We start by defining the map G :N→N , which will be shown to satisfy the
assumptions of the fixed-point theorem, where

N :=
{
(V,u,v,α,γ)∈L2(Ω)×L2(ΩSi)

2×L2(Γ)2
∣∣ V ≤V (x)≤V a.e. in Ω,

1

K
≤u(x),v(x)≤K a.e. in ΩSi, α,γ bounded a.e. on Γ

}

and (V1,u1,v1,α1,γ1)=G
(
(V0,u0,v0,α0,γ0)

)
, as follows.

(i) Solve the boundary-value problem with interface conditions

−∇·(A∇V1)=





qCdop−qni(e
V1/UT u0−e−V1/UT v0) in ΩSi,

0 in Ωox,

−2η sinh(β(V1−Φ)) in Ωliq,

(4.1a)

V1(0+,y)−V1(0−,y)=α0(y) on Γ, (4.1b)

A(0+)∂xV1(0+,y)−A(0−)∂xV1(0−,y)=γ0(y) on Γ, (4.1c)

V1=VD on ∂ΩD, (4.1d)

∇νV1=0 on ∂ΩN (4.1e)

for V1.
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(ii) Solve the elliptic boundary-value problem

UTni∇·(µne
V1/UT∇u1)−ni

u1v0−1

τp(eV1/UT u0+1)+τn(e−V1/UT v0+1)
=0 in ΩSi,

(4.2a)

u1=uD on ∂ΩD, (4.2b)

∇νu1=0 on ∂ΩN (4.2c)

for u1.
(iii) Solve the elliptic problem

UTni∇·(µpe
−V1/UT∇v1)−ni

u0v1−1

τp(eV1/UT u0+1)+τn(e−V1/UT v0+1)
=0 in ΩSi,

(4.3a)

v1=vD on ∂ΩD, (4.3b)

∇νv1=0 on ∂ΩN (4.3c)

for v1.
(iv) Update the surface-charge density and dipole-moment density according to the

microscopic model as

α1(y) :=Mα(V1), (4.4a)

γ1(y) :=Mγ(V1). (4.4b)

We show that these three boundary-value problems have unique solutions and
that (V1,u1,v1,α1,γ1)∈N , so that the map G is well-defined. The three problems
above can be written in the general form considered in Lemma 3.2 and the first
problem (4.1) includes interface conditions. The coefficient A in the lemma equals
either A, µne

V1/UT , or µpe
−V1/UT and hence the equations are uniformly elliptic. In

all three cases, g(x,w) is a monotone increasing function of w provided that u0 and
v0 are positive.

Choose (V,u0,v0,α0,γ0)∈N . Lemma 3.2 shows that the first problem (4.1) in the
definition of G has a unique solution V1. To get the estimates, we first set

g
˜
(V1) :=min

(
2η sinh(β(V1−Φ)),qni(

1

K
eV1/UT −Ke−V1/UT )−qC

)
,

g̃(V1) :=max
(
2η sinh(β(V1−Φ)),qni(KeV1/UT −

1

K
e−V1/UT )−qC

)
.

Note that both g
˜

and g̃ satisfy the requirements of Lemma 3.2. Solving the two

algebraic equations

g̃(κ̃+sup
Ω

VL)=0,

g
˜
(λ̃+inf

Ω
VL)=0,

where VL is the solution of the linear boundary-value problem of Lemma 3.1, yields

κ̃+sup
Ω

VL=min
(
Φ,UT ln

( 1

2Kni

(
C+

√
C2+4n2

i

)))
,

λ̃+inf
Ω
VL=max

(
Φ,UT ln

( K

2ni

(
C+

√
C

2
+4n2

i

)))
.
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Hence we obtain the estimate

V (x)≥min

(
inf
∂ΩD

VD,Φ−sup
Ω

VL,UT ln
( 1

2Kni

(
C+

√
C2+4n2

i

))
−sup

Ω
VL

)
,

V (x)≤max

(
sup
∂ΩD

VD,Φ− inf
Ω
VL,UT ln

( K

2ni

(
C+

√
C

2
+4n2

i

))
− inf

Ω
VL

)

for all x∈Ω from Lemma 3.2.

Next, we apply Lemma 3.2 to the second problem (4.2) to find a unique solu-
tion u1. Here we choose

g
˜
(u1) :=

1
Ku1−1

τp(KeV /UT +1)+τn(Ke−V /UT +1)
,

g̃(u1) :=
Ku1−1

τp(
1
K eV /UT +1)+τn(

1
K e−V /UT +1)

.

The equation g
˜
(ũ1)=0 yields ũ1=K and the equation g̃(u

˜1
)=0 yields u

˜1
=1/K.

The third problem (4.3) is treated analogously and we find unique solutions u1

and v1 with the estimates 1/K≤u1(x)≤K and 1/K≤v1≤K on ΩSi. Hence G maps
N into itself. Note that N is a closed and convex subset of L2(Ω)×L2(ΩSi)

2×L2(Γ)2.

2. We now show that G is continuous. The continuous dependence of the solu-
tion V1 of the first problem (4.1) in the definition of G on the data is obtained from
the estimate in Lemma 3.2 and the continuity of the right-hand side in (4.1a). The
second problem (4.2) and the third problem (4.3) in the definition of G are special
cases of the first. In the fourth problem (4.4), α1 and γ1 depend continuously on α0

and γ0 due to the continuous dependence of V1 and the continuity of Mα and Mγ .
Therefore G is continuous.

3. The continuous dependence of (V1,u1,v1,α1,γ1) on the data of the three prob-
lems (4.1), (4.2), and (4.3) implies that there is a positive and continuous function F
such that

‖V1‖H1(Ω)+‖u1‖H1(ΩSi)+‖v1‖H1(ΩSi)

≤F (‖Cdop‖L2(Ω),‖VD‖H1(∂Ω),‖uD‖H1(∂ΩSi),‖vD‖H1(∂ΩSi),‖α0‖H1/2(Γ),‖γ0‖L2(Γ)).

Hence we find for (V0,u0,v0,α0,γ0)∈N that the inequality

‖V1‖H1(Ω)+‖u1‖H1(ΩSi)+‖v1‖H1(ΩSi)≤C

holds for a constant C. Furthermore, ‖α1‖H1(Γ) and ‖γ1‖H1(Γ) are bounded due to
the assumptions on Mα and Mγ .

This yields that the image G(N), consisting of all (V1,u1,v1,α1,γ1), is bounded
as a subset of H1(Ω)×H1(ΩSi)

2×H1(Γ)2. Now the Rellich-Kondrachov compactness
theorem implies that the image G(N) is precompact in L2(Ω)×L2(ΩSi)

2×L2(Γ)2.

4. In summary, all the assumptions of the Schauder fixed-point theorem are
satisfied and hence we obtain the existence of a fixed-point of G, i.e., the existence of
a weak solution of the original problem.
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5. Local uniqueness

In general, the solution in Theorem 2.2 is not unique. Recalling the derivation
of the drift-diffusion equations from the Boltzmann transport equation, it is clear
that the drift-diffusion equations implicitly assume that the particle velocities are
distributed according to a Maxwellian distribution, i.e., they are in thermal equilib-
rium. However, large applied voltages and correspondingly large currents result in
fast particles for which Maxwellian distributions centered at v=0 are certainly not
adequate.

Uniqueness of the solution therefore holds only in a neighborhood around thermal
equilibrium with respect to the Dirichlet boundary conditions. Thermal equilibrium is
the solution where the fluxes Jn and Jp in the semiconductor vanish, where the fluxes
of the ions and molecules into and out of the boundary layer at the sensor surface
vanish as well, i.e., the surface reactions have reached the equilibrium state, and where
the voltages U ∈R

k, that are applied at each of the k contacts that constitute ∂ΩD,
are equal to the Fermi level.

The equilibrium potential is called Ve and the equilibrium surface densities are
called αe and γe; the equilibrium potential is then the solution of the equilibrium
boundary-value problem

−∇·(A∇Ve)= qCdop−qni(e
Ve/UT −e−Ve/UT ) in ΩSi,

(5.1a)

−∇·(A∇Ve)=0 in Ωox,
(5.1b)

−∇·(A∇Ve)=−2η sinh(β(Ve−Φ)) in Ωliq,
(5.1c)

Ve(0+,y)−Ve(0−,y)=αe on Γ,
(5.1d)

A(0+)∂xVe(0+,y)−A(0−)∂xVe(0−,y)=γe on Γ,
(5.1e)

Ve=VD(0) on ∂ΩD,
(5.1f)

∇νVe=0 on ∂ΩN ,
(5.1g)

and it exists uniquely due to Lemma 3.2.

In order to state the uniqueness result, we need the following assumptions on the
data.

Assumptions 5.1.

(i) The recombination rate R has the form R=F (x,V,u,v)(uv−1), where
F (x,.,.,.)∈C2(R×R

2
+) holds for all x∈Ω and where the derivatives

∂β
(V,u,v)F (.,V,u,v) are in L∞(Ω) uniformly for all (V,u,v) in bounded subsets

of R×R
2
+ and for all multiindices β with |β|≤2.

Furthermore, there are constants ω and ω such that either 0<ω≤
F (x,Ve(x),1,1)≤ω or F (x,Ve(x),1,1)=0 holds for all x∈Ω.

(ii) The Dirichlet data (VD,uD,vD) are a Lipschitz-continuously differentiable map
of U from R

k into H2(Ω)×H2(ΩSi)
2 and uD(0)=vD(0)=1 holds in ΩSi.
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(iii) The solution u of the boundary-value problem −∇·(A∇u)=f in Ω, u=0 on
∂ΩD, and ∇νu=0 on ∂ΩN , satisfies the inequality

‖u‖W 2,q(Ω)≤C‖f‖Lq(Ω)

for all f ∈Lq(Ω) with q=2 and q=3/2. This is actually a condition on the
boundary segments ∂ΩD and ∂ΩN ; it excludes boundaries where Dirichlet and
Neumann segments meet under angles larger than π/2.

(iv) The Fréchet derivatives M ′
α and M ′

γ of the interface models Mα and Mγ with

respect to V exist, they are in H1/2(Γ) and L2(Γ), respectively, and they satisfy
the inequality

‖M ′
α(V )‖H1/2(Γ)+‖M ′

γ(V )‖L2(Γ)≤C‖V ‖H2(Ω)

in a neighborhood of the equilibrium potential Ve with a sufficiently small con-
stant C.

The following theorem yields the local uniqueness of the solution of (2.4). The
proof is based on the implicit-function theorem.

Theorem 5.2 (Local uniqueness). Under Assumptions 2.1 and 5.1, there exists
a sufficiently small σ∈R with |U |<σ such that the problem in Theorem 2.2 has a
locally unique solution

(
V ∗(U),u∗(U),v∗(U),α∗(U),γ∗(U)

)
∈H2(Ω)×H2(ΩSi)

2×H1/2(Γ)×L2(Γ).

The solution satisfies

(
V ∗(0),u∗(0),v∗(0),α∗(0),γ∗(0)

)
=(Ve,1,1,αe,γe)

and it depends continuously differentiably on U as a map from
{
U ∈R

k
∣∣ |U |<σ

}
into

H2(Ω)×H2(ΩSi)
2×H1/2(Γ)×L2(Γ).

Proof. 1. We start with the substitution Ṽ :=V −VD(U), ũ :=u−uD(U), and
ṽ :=v−vD(U). For notational simplicity, we denote Ṽ , ũ, and ṽ again by V , u, and v.
After the substitution, the system (2.4) becomes

−∇·(A∇(V +VD))

= qCdop−qni(e
(V+VD)/UT u−e−(V+VD)/UT v) in ΩSi,

−∇·(A∇(V +VD))=0 in Ωox,

−∇·(A∇(V +VD))=−2η sinh(β(V +VD−Φ)) in Ωliq,

V (0+,y)−V (0−,y)=α on Γ,

A(0+)∂xV (0+,y)−A(0−)∂xV (0−,y)=γ on Γ,

UTni∇·(µne
(V+VD)/UT∇(u+uD))

=F (x,V +VD,u+uD,v+vD)((u+uD)(v+vD)−1) in ΩSi,

UTni∇·(µpe
−(V+VD)/UT∇(v+vD))

=F (x,V +VD,u+uD,v+vD)((u+uD)(v+vD)−1) in ΩSi,

α=Mα(V ) on Γ,

γ=Mγ(V ) on Γ,

V =0 on ∂ΩD,
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u=v=0 on ∂ΩD,Si,

∇νV =0 on ∂ΩN ,

∇νu=∇νv=0 on ∂ΩN,Si.

We write this boundary-value problem as the operator equation

G(V,u,v,α,γ,U)=0,

where the map

G : B×Sσ1
(0)→L2(Ω)×L2(ΩSi)

2×H1/2(Γ)×L2(Γ) (5.2)

is given by the boundary-value problem above. Here B is an open subset ofH2
∂(Ω\Γ)×

H2
∂(ΩSi)

2×H1/2(Γ)×L2(Γ) with

H2
∂(Ω) :=

{
φ∈H2(Ω)

∣∣∇νφ=0 on ∂ΩN , φ=0 on ∂ΩD

}

and the sphere Sσ1
(0) with radius σ1 and center 0 is a subset of Rk. The domain must

be chosen such that u= ũ+uD>0 and v= ṽ+vD>0 for all (V,u,v,α,γ)∈B and for
all U ∈Sσ1

(0), because u and v are positive and the recombination rate R is defined
only for positive u and v.

Since uD(0)=1 (this is the boundary condition for U =0 of the equilibrium so-
lution), we have to ensure that ‖ũ‖L∞(ΩSi) is small enough so that u is positive.
To ensure this, we choose B bounded and small enough; if ‖ũ‖H2(ΩSi) is small
enough, this indeed implies that ‖ũ‖L∞(ΩSi) is small enough due to the inequality
‖u‖L∞(U)≤C‖u‖H2(U) for all f ∈H2(U). The same argument ensures that v is posi-
tive if B is bounded and small enough.

Since G(V,u,v,α,γ,U)∈L2(Ω)×L2(ΩSi)
2×H1/2(Γ)×L2(Γ) implies that

(V,u,v,α,γ)∈B and U ∈Sσ1(U), and since products of functions in B are in L2(Ω)
due to the inequality ‖uv‖L2(U)≤C‖u‖H1(U)‖v‖H1(U) for all u and v∈H1(U), the
map G, as stated in (5.2), is well-defined.

2. The equilibrium solution (Ve−VD(0),0,0,αe,γe,0) is obviously a solution of
the equation G=0. To apply the implicit-function theorem, the Fréchet derivative

D(V,u,v,α,γ)G(Ve−VD(0),0,0,αe,γe,0)

must have a bounded inverse. To find the inverse of the Fréchet derivative, we solve
the equation

D(V,u,v,α,γ)G(Ve−VD(0),0,0,αe,γe,0)(a1,a2,a3,a4,a5)=(g1,g2,g3,g4,g5) (5.3)

for ai, where (g1,g2,g3,g4,g5)∈L2(Ω)×L2(ΩSi)
2×H1/2(Γ)×L2(Γ). This equation is
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equivalent to the boundary-value problem

−∇·(A∇a1)= −qni

((
eVe/UT +e−Ve/UT

UT

)
a1

+e−Ve/UT a2−eVe/UT a3

)
+g1 in ΩSi,

(5.4a)

−∇·(A∇a1)=g1 in Ωox,
(5.4b)

−∇·(A∇a1)=−2ηβ sinh(β(Ve−Φ))a1+g1 in Ωliq,
(5.4c)

a1(0+,y)−a1(0−,y)=a4 on Γ,
(5.4d)

A(0+)∂xa1(0+,y)−A(0−)∂xa1(0−,y)=a5 on Γ,
(5.4e)

ni∇·(µne
Ve/UT∇a2)=ω(x)a2+ω(x)a3+g2 in ΩSi,

(5.4f)

ni∇·(µpe
−Ve/UT∇a3)=ω(x)a2+ω(x)a3+g3 in ΩSi,

(5.4g)

a4=M ′
α(Ve)a1+g4 on Γ,

(5.4h)

a5=M ′
γ(Ve)a1+g5 on Γ,

(5.4i)

a1=0 on ∂ΩD,
(5.4j)

a2=a3=0 on ∂ΩD,Si,
(5.4k)

∇νa1=0 on ∂ΩN ,
(5.4l)

∇νa2=∇νa3=0 on ∂ΩN,Si,
(5.4m)

where ω(x) :=F (x,Ve(x),1,1) and either 0<ω≤f(x)≤ω or ω=0 holds in ΩSi due to
the assumptions on the recombination rate.

In the case ω=0 in Ω, the equations (5.4f) and (5.4g) are decoupled from the
first equation and from each other. Hence the existence of a unique solution and the
boundedness of the inverse are seen immediately.

In the case 0<ω≤f(x)≤ω in ΩSi, the unique existence of the solutions a2 and a3
of the equations (5.4f) and (5.4g) are shown as in the proof of Theorem 3.3.1 in [15].

In both cases, the estimate

‖a2‖H2(ΩSi)+‖a3‖H2(ΩSi)≤C(‖g2‖L2(ΩSi)+‖g3‖L2(ΩSi))

holds.
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3. By substituting a2 and a3 into (5.4a), we find the estimate

‖a1‖H2(Ω)≤C1(‖g1‖L2(Ω)+‖g2‖L2(ΩSi)+‖g3‖L2(ΩSi)+‖g4‖H1/2(Γ)+‖g5‖L2(Γ)

+‖a4‖H1/2(Γ)+‖a5‖L2(Γ))

using Lemma 3.1. Equations (5.4h) and (5.4i) and Assumption 5.1(iv) on Mα and Mγ

yields the existence of a sufficiently small constant C2 such that the inequality

‖a4‖H1/2(Γ)+‖a5‖L2(Γ)≤C2‖a1‖H2(Ω)+‖g4‖H1/2(Γ)+‖g5‖L2(Γ)

holds. For sufficiently small C2, i.e., if C1C2<1, the last two inequalities yield

(1−C1C2)‖a1‖H2(Ω)≤C1(‖g1‖L2(Ω)+‖g2‖L2(ΩSi)+‖g3‖L2(ΩSi)

+2‖g4‖H1/2(Γ)+2‖g5‖L2(Γ)).

Hence we have shown that the Fréchet derivative has a bounded inverse, i.e., there is
a constant C such that the inequality

‖(D(V,u,v,α,γ)G(Ve−VD(0),0,0,αe,γe,0))
−1‖≤C

holds, where the norm is the operator norm of

L2(Ω)×L2(ΩSi)
2×H1/2(Γ)×L2(Γ)→H2(Ω\Γ)×H2(ΩSi)

2×H1/2(Γ)×L2(Γ).

Finally, the implicit-function theorem yields the assertion.

6. Discretization

In order to calculate numerical solutions of the model equations (2.4), the system
was discretized using a finite-volume Scharfetter-Gummel method, where the micro-
scopic models yielding surface charge and dipole moment are treated as an additional
step in its iterative scheme. To discretize the Poisson equation, special care has to
be taken at the interface Γ. At Γ, two grid points are placed with identical coordi-
nates corresponding to the two limit values V (0+) and V (0−). When Γ is parallel to
the y-coordinates, we denote the two limit values as Vi+1,j,k and Vi,j,k and the two
interface conditions (2.4d) and (2.4e) become the two discretized equations

Vi+1,j,k−Vi,j,k=α, (6.1a)

A(0+)
Vi+2,j,k−Vi+1,j,k

∆x
−A(0−)

Vi,j,k−Vi−1,j,k

∆x
=γ, (6.1b)

where ∆x is the grid spacing in x-direction.
The numbering of the additional grid points at the interface is crucial to obtain

a system matrix with a small bandwidth. If the grid points are numbered in a naive
way, the typical bandwidth structure of discretized Laplace-type operators is lost. In
order to arrive at a numbering scheme for the grid points which allows to implement
the interface conditions efficiently, it is advantageous to first associate the variables
Vi,j,k with the potential values on an equidistant grid (see Figure 6.1) and then to
relate the variables Vi,j,k in the vicinity of the interface according to the equations
(6.1). These equations are indicated by black arrows in Figure 6.1. The superfluous
grid points marked red in the figure at the vertices of the interface (and more grid
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Fig. 6.1. Location of the grid points at the interface. The red points are additional points whose
treatment is explained in Figure 6.2. The arrows indicate how two values V (0+) and V (0−) are
connected by equations (6.1).

Fig. 6.2. The superfluous red grid points are located in rows and columns that start at the
vertices of the interface. These superfluous points are identified with neighboring black points as
indicated by the arrows between a red and a black point each. The other arrows between two black
points show which grid points are linked in the finite-volume discretization of the Laplace operator.

points in rows and columns starting there indicated in Figure 6.2) are identified with
neighboring points by trivial equations.

Furthermore, the black points at the vertices of the interface require special at-
tention due to their location. The equations

Vi,j,k−Vi−1,j−1,k=α,

A(0+)
Vi+1,j+1,k−Vi,j,k√

∆x2+∆y2
−A(0−)

Vi−1,j−1,k−Vi−2,j−2,k√
∆x2+∆y2

=γ

for these points are similar to the equations (6.1).
As mentioned above, the superfluous red grid points are identified with their

neighbors and the correct side so that the finite-volume discretization of the Poisson
equation ignores these points (see Figure 6.2). This can also be viewed as a shift in
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Fig. 6.3. The system matrix. The red box indicates the points associated with the vertical part
of the interface.

space of the points used for computation. Hence, the discretization of the x-derivative
in the finite-volume discretization reads

−

(
Ai+ 1

2
,j

Vi+1,j,k−Vi,j,k

∆x
−Ai− 3

2
,j

Vi,j,k−Vi−2,j,k

∆x

)
∆y∆z, (6.2)

and the y- and z-derivatives give rise to analogous terms.
In summary, this complicated numbering scheme with additional grid points that

are identified later implies that the band structure of the finite-volume discretization
of the Laplace operator is retained, i.e., it exhibits almost the same band structure.
An example is shown in Figure 6.3. The difference (marked by a red box) from the
usual band structure comes from the numbering scheme at the vertical part of the
interface which moves the band structure outwards. The missing points in the band
structure are due to the identification of superfluous points with neighbors and result
in a simpler system of linear equations.

This implementation of the interface conditions is optimal in the sense that there
is no computational penalty that must be paid for using the interface conditions
(and the homogenized equation), since the computational effort is determined by the
bandwidth.

7. Numerical results

In order to compare the numerical simulation results obtained from the system of
equations (2.4) with measurements, a real-world experimental structure is considered
[2,3,11]. It consists of a silicon nanowire with a silicon-dioxide layer placed on a silicon
substrate immersed in an aqueous solution (see Figure 1.1). The interface conditions
are located between the silicon-dioxide layer and the aqueous solution and they model
the biofunctionalized boundary layer of the sensor. The boundary conditions are
the Dirichlet conditions for the ohmic contacts at the source and drain ends of the
nanowire, for the back-gate at Vb below the substrate, and for the electrode at Ve in
the liquid. Zero Neumann boundary conditions are used everywhere else.

For the comparison with experimental data from [26], we simulated a 500nm
long biosensor with a 120nm wide and 40nm high silicon nanowire. The nanowire
is n-doped with a doping concentration of 1017cm−3 and a back-gate voltage of Vb=
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Fig. 7.1. A simulated current-voltage characteristic (dotted line) and an experimental charac-
teristic (solid line) with a back-gate voltage of 5V. The source-drain voltage varies between 0V and
1V.

5V is used. The results are shown in Figure 7.1. The simulated current-voltage
characteristics and the experimental data are in very good agreement, which shows
the ability of the three-dimensional PDE model in (2.4) to reproduce the physics of
this kind of sensor. Note that also the slopes at VSD=0, i.e., the transconductances,
agree.

A key problem in this field is the determination of several physical parameters
that cannot be determined experimentally. Hence a more detailed study based on the
present model can be found in [27] in order to aid the rational design and optimization
of these sensors by simulation.

8. Conclusions

Proofs of existence and local uniqueness for a 3d nonlinear system of PDEs with
interface conditions were presented. The PDE system serves as a model for the
self-consistent simulation of field-effect sensors such as bio- and gas sensors. The
model contains two interface conditions for the electric potential and the electric dis-
placement and is based on the drift-diffusion equations and the Poisson-Boltzmann
equation. The main results of existence and local uniqueness around thermal equilib-
rium hold true under reasonable assumptions also on the microscopic model for the
boundary layer that yields the values of the interface conditions. The key methods
for these results are the Leray-Schauder fixed-point theorem, a maximum principle
for nonlinear PDEs, and the implicit-function theorem.

Furthermore, this model shows very good quantitative agreement with experimen-
tal data. Importantly, the simulations are 3d and self-consistent, i.e., the macroscopic
dipole-moment density and the macroscopic surface-charge density are updated in ev-
ery iteration in dependence on the potential. Consequently we believe that this PDE
model will prove to be useful for the rational design of field-effect sensors.
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[24] L.A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, Oxford University Press,
1995.

[25] J.W. Jerome, Consistency of semiconductor modeling: An existence/stability analysis for the



716 EXISTENCE AND UNIQUENESS FOR FIELD-EFFECT SENSOR MODELS

stationary Van Roosbroeck system, SIAM J. Appl. Math., 45, 565–590, 1985.
[26] N. Elfström, A.E. Karlström, and J. Linnros, Silicon nanoribbons for electrical detection of

biomolecules, Nano Lett., 8(3), 945–949, 2008.
[27] S. Baumgartner, M. Vasicek, A. Bulyha, and C. Heitzinger, Optimization of nanowire DNA

sensor sensitivity using self-consistent simulation, Nanotech., 22(42), 425503/1–8, 2011.


