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1 Introduction

The digital revolution was initiated by the invention of the field-effect tran-
sistor (fet), for which Shockley, Bardeen, and Brattain were jointly awarded
the 1956 Nobel Prize in Physics. Semiconductor transistors and microchips
have deeply influenced human society. Also the invention of the first biosen-
sor for blood analysis, invented by Clark and Lyons more than thirty years
later, had a life changing effect (Clark and Lyons, 1962). Another eight years
later, these two technologies were merged as Bergveld introduced the ion-
sensitive field-effect transistor (isfet). This marks the beginning of sensing
technologies based on field-effect transistors (Bergveld, 1970; Schöning and
Poghossian, 2006). Beside the use of field-effect transistors as pH sensors,
which were also established in 1971 by Matsuo et al. (Janata, 2004), they
can be used as versatile tools for the detection of, e.g., ion concentrations,
enzymatic reactions, cellular metabolism, and action potentials of living cells
(Poghossian et al., 2007).

Since then, biosensor technologies flourished and are of paramount inter-
est (Stern et al., 2010; Tian et al., 2010; Timko et al., 2010). The transducers
used in field-effect sensors have changed in recent years due the rise of nan-
otechnology in medical and biotechnological applications (Patolsky et al.,
2006c,a; Stern et al., 2008). Nowadays, the most promising sensing devices
are based on nanowires and carbon nanotubes because of their high sensi-
tivity, fast response, and direct electrical readout (Patolsky et al., 2006b).
Still, questions of characterization, uniformity and manufacturability need
to be addressed before nanoscale biosensors can be mass-produced and used
in daily life.

In this review, we discuss the state of the art of the quantitative under-
standing of the sensing mechanism in nanowire-based field-effect biosensors.
Quantitative understanding and predictive simulations allow for the rational
design and the optimization of the nanowire sensors.

In the case of carbon-nanotube sensors, it has been reported that the
adsorption of biomolecules, e.g., proteins, on a swnt (single-walled carbon
nanotube) results in a sufficient change of conductance (Chen et al., 2003,
2004) for detection due to the field effect. Nonetheless, some problems must
be overcome before swnts can be used commercially as sensors. For exam-
ple, the non-specific binding of molecules to the swnt must be avoided due
to the possible change of the dielectric constant of the electric double layer in
the aqueous solution, which would cause an unwanted sensor response (Chen
et al., 2004).

In recent years, much research on silicon nanowire based sensors has been
conducted (Cui et al., 2000, 2001, 2003; Hahm and Lieber, 2004; Patolsky and
Lieber, 2005; Wang et al., 2005; Zheng et al., 2005; Li et al., 2006; Patolsky
et al., 2007; Stern et al., 2007b,a; Elfström et al., 2008; Gao et al., 2010; Zheng
et al., 2010), and high sensitivity and selectivity have been demonstrated.
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Figure 1: Working principle of a conventional fet (top) and a nanowire field-
effect sensor (bottom). In both cases, negative charge at the gate contact or
at the nanowire surface leads to an increase of conductance due to accumu-
lation of charge carriers in the semiconductor near the negative charges.

Both DNA and antigen sensors are selective due to the inherent selectivity
of DNA-DNA and antibody-antigen binding that is responsible for biological
functioning as well.

Physically sound models aid in gaining a deeper insight into the func-
tioning of field-effect sensors. Before we review the models, we summarize
the working principle of nanowire field-effect sensors in order to identify the
crucial parts for modeling. A p-doped silicon nanowire together with two
contacts, a source and a drain contact, is shown in Fig. 1. The nanowire
transducer is usually located on top of a dielectric material and covered by a
second dielectric material, which is exposed to the ionic solution. A conven-
tional fet structure is also shown in Fig. 1: In this device, a gate contact is
located on the top of the dielectric and a negative gate voltage VG induces
an accumulation of positive charge carriers near the silicon surface, which
in turn induces an increase of conductance, while a positive gate voltage
decreases the conductance.

In field-effect biosensors, the gate contact is replaced by a functional-
ized boundary layer and an ionic solution containing target molecules. The
transducer is functionalized with receptor molecules: in the case of a DNA
sensors, the receptors are complementary single-stranded DNA; in the case
of antigen sensors, the receptors are the corresponding antibodies. As target
molecules in the liquid bind to the receptors, their presence and their par-
tial charges change the charge concentration in the boundary layer, which in
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turn modulates the conductance of the nanowire transducer. In Fig. 1, the
target molecules carry negative charges and act as a negative gate voltage.
Hence accumulation of charge carriers again increases the conductance.

Additional control of the nanowire can be provided by the implementa-
tion of a backgate contact, and it plays an important role for the sensitivity
of such sensors. Furthermore, it is well-known that the nanowire surface is
charged when in contact with water due to chemical reactions, and the sur-
face charge depends on the material and the pH value. Therefore a double
layer of ions forms at the surface.

The sensor signal is the measured current through the nanowire, which
is modulated due to the gate effect as target molecules bind. In order to
calculate the sensor response, it is therefore crucial to consider the boundary
layer and the screening of the partial charges of the biomolecules by free
ions. The charged boundary layer acts as the gate contact, so that electron
and hole transport in the semiconductor must be calculated as a function of
the boundary layer, the applied voltages, the geometry of the nanowire, and
so forth.

These considerations imply that physically sound modeling and simula-
tion must include firstly the charge concentration in the biofunctionalized
boundary layer that gives rise to the field effect and secondly the charge
transport in the semiconducting transducer that translates the difference in
charge in the boundary layer to the electrical signal. Clearly, the modeling
and simulation of field-effect sensors is more complicated than the simulation
of conventional fets due to the additional boundary layer. In the best case,
the sensor model is self-consistent meaning that the influences of all charges
onto all charges are taken into account while including all applied potentials;
this is usually achieved by solving the Poisson equation.

In summary, field-effect biosensors consist of two parts – namely the
biofunctionalized boundary layer and the nanowire transducer – that shall
be considered self-consistently. Models for the boundary layer, i.e., screening
models, are discussed in Section 3. The sensor signal is measured as the
current (or change in current) through the nanowire and cannot be explained
by the surface models alone; hence suitable charge-transport models are
discussed in Section 4. In order to glue these two parts together and solve
the multiscale problem inherent in these sensors, a homogenization method
is advantageous, which is presented in the following Section 2.

2 Homogenization

As mentioned above, the characteristic length scale of the biomolecules in
the boundary layer is smaller than the dimensions of the nanowire by a some
orders of magnitude. Problems of this type are called multiscale problems
(Pavliotis and Stuart, 2007). A main motivation to study them is the fact
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that problems with a microscopic structure are extremely time consuming
to solve numerically, since the microscopic structure must be resolved by the
numerical grid. Homogenization generally yields equations of similar type,
but with homogenized coefficients so that the numerical grids do not have to
resolve the microscopic structure anymore. Then previously computationally
intractable problems can be solved numerically with reasonable effort.

To obtain the sensor response in terms of the nanowire current, the elec-
trical potential V must be computed everywhere in the simulation domain.
Therefore, we consider the Poisson equation

−∇ · (ε(x, y, z)∇V (x, y, z)) = ρ(x, y, z) in Ω, (1a)
V (0+, y, z) = V (0−, y, z) on Γ, (1b)

ε(0+, y, z)∂xV (0+, y, z) = ε(0−, y, z)∂xV (0−, y, z) on Γ (1c)

as the basic equation for the electrostatic potential, where V is the elec-
trostatic potential and ε is the permittivity. Furthermore, ρ is the charge
concentration in the different materials and will depend on the electrostatic
potential itself in the drift-diffusion-Poisson system in Section 4. In the liq-
uid, ρ describes the charge concentration in the ionic solution and also in
the boundary layer. The simulation domain Ω is split by the interface Γ
into two subdomains. For notational simplicity, the interface is located at
x = 0. The conditions (1b) and (1c) ensure the continuity of the electric
potential and dielectric displacement in the presence of the discontinuity in
the permittivity ε at the material boundaries.

The aim of the homogenization method (Heitzinger et al., 2010b) is to
replace the Poisson equation and the fast varying charge concentration ρ in
the boundary layer by a simpler problem that does not exhibit a microscopic
structure and oscillations. Indeed it is found that the complicated, oscillating
three-dimensional structure of the biomolecules, their partial charges and
screening ions can be replaced by two interface conditions involving only
two integral values of the charges in the boundary layer after the cell size in
the boundary layer goes to zero.

After homogenization, the original problem (1) becomes the homogenized
problem

−∇ · (ε(x, y, z)∇V (x, y, z)) =

{
ρ(x, y, z) in ΩSi ∪ Ωox,

0 in Ωliq,
(2a)

V (0+, y, z)− V (0−, y, z) =
ζ(y, z)

ε(0+, y, z)
on Γ, (2b)

ε(0+, y, z)∂xV (0+, y, z)− ε(0−, y, z)∂xV (0−, y, z) = −γ(y, z) on Γ, (2c)

where V is now the homogenized potential. Here 0+ denotes the limit at
the interface Γ on the side of the liquid, while 0− is the limit on the side of
the transducer. The fast varying charge concentration in the surface layer is
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now, as stated before, subsumed in the macroscopic dipole-moment density ζ
and the macroscopic surface-charge density γ of the boundary layer which
are defined as

γ =

∫
χ(x, y, z)dxyz, (3a)

ζ =

∫
xχ(x, y, z)dxyz, (3b)

where χ is the charge concentration of a cell in the boundary layer.
Both ζ and γ may depend on y and z, the coordinates parallel to the

surface, to allow for slow variations of the boundary layer along the interface.
The two interface conditions have the following interpretation: the con-

dition (2b) is a jump in the electrostatic potential and given by the dipole-
moment density of the boundary layer, whereas condition (2c) is a jump in
the electrostatic field (or more precisely, in the electrostatic displacement)
and given by the surface-charge density.

The values of ζ and γ are immediately obtained from the charge concen-
tration in a cell of the boundary layer and can be obtained from any of the
boundary-layer models in Section 3.

In summary, the homogenization result decouples the microscopic and
macroscopic length scales via the two interface conditions in (2). Details
on the efficient implementation of the interface conditions can be found in
(Baumgartner and Heitzinger, 2012).

3 The biofunctionalized boundary layer

The biofunctionalized boundary layer is the part of the sensor that provides
selectivity. It also translates the presence of biomolecules into a change in
the electrostatic potential in the semiconducting transducer due to a redis-
tribution of charge in the boundary layer, when target molecules are present
and bound to receptors. Since the sensing concept is based on the field effect,
the charge concentration in the boundary layer is crucial for the quantitative
understanding of the sensing mechanism.

An accurate model for the boundary layer has to incorporate several
effects. In the simplest case, a non-functionalized nanowire is exposed to an
electrolyte. Here the charge of the dielectric, e.g., SiO2 or Si3N4, which covers
the transducer, depends on the pH value of the electrolyte due to reactions of
the electrolyte with hydroxyl groups at the dielectric surface. This is a well-
known effect for isfets and can be modeled by the site-dissociation model
(Bergveld and Sibbald, 1988; Schöning and Poghossian, 2002; Xu et al., 2005)
discussed in Section 3.1. This model together with the homogenization result
in Section 2 and a charge-transport model for the nanowire can be used for
the simulation of pH sensors.
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Due to the surface charge of the dielectric, an electric double layer of free
ions forms on the transducer. This is a well-known effect that is commonly
simulated using Metropolis-Monte-Carlo simulations (Allen and Tildesley,
1987) in order to take into account the finite size of the ions. In addition
to the electric double layer, receptor and target molecules with their partial
charges are present at the surface, together with a cloud of screening, free
ions. Furthermore, the charge state of biomolecules depends on the pH value
and the biomolecules and their screening charges interact with the electric
double layer.

These questions are – despite recent progress – still an area of active re-
search (Alexov et al., 2011). Hence we describe the three main types of mod-
els for these effects in the following: the atomistic approach, i.e., Monte-Carlo
simulations, the continuum approach, i.e., the Poisson-Boltzmann equation,
and the empirical propka model (Li et al., 2005) are discussed. Compact
screening models, such as (Sørensen et al., 2007) have also been developed
for the simulation of nanowire sensors (De Vico et al., 2010, 2011).

3.1 The site-dissociation model

The surface of dielectric materials such as SiO2, Si3N4, Al2O3, and Ta2O5

is charged when in contact with an electrolyte and it is neutral only at
the isoelectric point, a specific pH value. This surface charge provides an
important baseline value, also regarding the operating regime of the sensor.
Since the surface charge is a function of pH value, it was already investigated
in isfet theory. In the following, we give an overview on the site-dissociation
model from Bergveld (Bergveld and Sibbald, 1988).

The site-dissociation model assumes that there is an interaction of the
electrolyte with discrete surface sites which are amphoteric, i.e., the surface
sites can be neutral, a proton donor, or a proton acceptor.

The reactions of the hydroxyl groups (AOH groups, where A is, for ex-
ample, Si or Al in the case of an SiO2 or Al2O3 surface) at the surface with
the H+ ions in their vicinity relate the equilibrium potential ψ0 and the H+

ions. These reactions are expressed in the equilibrium equations

AOH 
Ka AO− + H+
s , (4a)

AOH + H+
s 
Kb AOH+

2 , (4b)

where the dissociation constants Ka and Kb are

Ka =
[AO−][H+]s

[AOH]
, Kb =

[AOH+
2 ]

[AOH][H+]s

and where AO−, AOH+
2 and AOH represent the negative (deprotonated),

positive (protonated), and neutral surface sites respectively and [.] denotes
site concentration.
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Furthermore, the concentration of the H+ ions at the surface is related
to the bulk concentration via Boltzmann statistics by

[H+]s = [H+]b exp
(
−qψ0/(kT )

)
, (5)

where q is the elementary charge, k is the Boltzmann constant, and T is the
temperature. Using the net surface charge

σ0 := q([AOH+
2 ]− [AO−]) (6)

and the total number of surface sites per unit area

Ns := [AOH] + [AOH+
2 ] + [AO−] (7)

together with (3.1) and the assumption that 2(KaKb)
1/2 � 1 yields the

equation (see also (Bousse et al., 1983))

ln[H+]− ln(Ka/Kb)
1/2 =

qψ0

kT
+sinh−1

(
σ0

2qNs(KaKb)1/2

)
− ln

(
1− σ0

qNs

)
.

(8)
From this equation and the assumption that σ0 � qNs, we obtain the

relation between the isoelectric point pI (i.e., the pH value where the surface
is charge neutral) and the surface potential ψ0 as the equation

2.303(pI− pH) =
qψ0

kT
+ sinh−1

(
qψ0

kTβ

)
(9)

with

β :=
2q2Ns(KaKb)

1/2

kTCL
, (10)

where CL is the constant capacitance of the double layer, i.e., CL gives the
relation σ0 = ψ0CL between σ0 and ψ0. Values reported in the literature
are Ns = 5 · 1014cm−2 and CL = 20µFcm−2 for SiO2 (Bergveld and Sibbald,
1988). In the case of an SiO2 surface, the values of β and pI are β = 0.14
and pI = 2.2 (Bergveld and Sibbald, 1988). Finally, the net surface charge
can be obtained from the equilibrium potential by multiplication by CL. For
a more detailed description see (Bousse et al., 1983; Harame et al., 1987).

3.2 Screening and biomolecules

The modeling of the electrostatics of biomolecules such as proteins and dna
is not only essential for the simulation of nanowire field-effect sensors, but
it is its own important research area. Hence it is not surprising that many
approaches of different kinds have been developed, but it is astonishing that
none of the methods is significantly better than the rest, each having its own
advantages and disadvantages (Lu et al., 2008; Kukic and Nielsen, 2010;
Alexov et al., 2011).
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Figure 2: The simulation domain of a constant-voltage Metropolis-Monte-
Carlo simulation. Here it contains 2 × 2 biomolecules at the bottom of the
cell. The molecules can be rotated with respect to the surface (Bulyha and
Heitzinger, 2011).

In the following, the three main types of biomolecule models are pre-
sented. Firstly, a Monte-Carlo algorithm for charged biomolecules at charged
surfaces is discussed (Bulyha and Heitzinger, 2011). It is the first of its kind
to include charged biomolecules and has been used for sensor simulation
(Baumgartner et al., 2011a). The main advantage of the Monte-Carlo ap-
proach is that it takes into account the finite size of the ions. Secondly,
continuum models are based on the Poisson-Boltzmann equation (pbe), a
three-dimensional partial differential equation and one of the main equations
in computational chemistry. Thirdly, empirical models have been developed
and we give an overview on the propka algorithm, which is one of the most
used (Li et al., 2005), also for biosensor simulations (De Vico et al., 2010,
2011).

3.2.1 The Metropolis-Monte-Carlo method

Recently, a Metropolis-Monte-Carlo (mmc) algorithm was developed for the
simulation of biomolecules and free ions in the constant-voltage ensemble
(Bulyha and Heitzinger, 2011). Here we give an overview on the method
and use it for simulations in Section 4.2.

The simulation box is shown in Fig. 2. The biomolecules such as pna
(peptide nucleic acid), single-stranded dna (ssdna), or double-stranded dna
(dsdna), are fixed at the bottom of the box. The length of the oligomers
and their linkers can be adjusted to the desired length. The dna and pna
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oligomers are modeled as cylinders, where the partial charges of the phos-
phate groups of the backbone are situated on the cylinder surface on a helix
while the free ions are excluded. The points where the linkers are attached
to the bottom of the box are arranged in an equidistant grid.

The reason for including many biomolecules in a single simulation box
is computational. In order to be able to simulate electrolytes with real-
istic, low ionic concentrations and realistic concentrations of immobilized
biomolecules, the simulation domain is quite small compared to the number
of free ions; the small number of ions in the box leads to bad statistics in the
Monte-Carlo simulation. Hence a larger simulation domain with a grid of
molecules provides a sufficient number of ions and leads to much improved
statistics.

Each oligomer is bound to the surface by a linker and the biomolecules
together with their linkers are simulated as impenetrable cylinders with two
hemispheres of the same radius on the top and at the bottom. In the case
of pna oligomers, the cylinders are uncharged, and in the case of ssdna and
dsdna oligomers, they carry the charges of the phosphate groups of the back-
bone on their outside. The sizes correspond to the b-dna conformation of
dna. The oligomers can additionally be rotated with respect to the surface.

The electrolyte in the simulation box is usually Na+Cl−. The ions are
modeled as charged hard spheres and water is modeled as a continuous
medium without structure.

The top and the bottom of the simulation box are impenetrable walls
with given charge densities to that the electric field can be controlled. The
bottom of the box carries the surface charge as calculated from the site-
dissociation model in Section 3.1.

In order to calculate the ion concentration profile, a 3d mmc method must
be used in the constant-voltage ensemble because of the voltage drop across
the simulation box in sensor application. The constant-voltage ensemble
(Kiyohara and Asaka, 2007) can be considered as an extension of the grand-
canonical ensemble.

A simulation in the mmc constant-voltage ensemble starts with a random
state of the system, i.e., the locations of all ions are random. A new state
of the system is generated by randomly adding or deleting a pair of ions,
changing the position of an ion while avoiding overlaps, and by transferring
a random amount of charge between the walls. Then the potential energy
is calculated for each state of the system. The interactions between all
pairs of charge types, i.e., the ion-ion, the ion-biomolecule, the ion-plate,
the biomolecule-plate, and the plate-plate interactions, are included in this
calculation and the long-range contributions of the Coulomb forces are taken
into account via integration over infinitely many periodically repeated cells.
If the movement of a charge reduces the energy of the system, the new state is
unconditionally accepted, while otherwise the movement is allowed only with
a certain probability that depends exponentially on the energy difference.
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Finally, the surface-charge density γ and the dipole-moment density ζ
are calculated from the integrals in (3), where the charge concentration χ is
the result of the mmc simulation.

3.2.2 The Poisson-Boltzmann equation

The most-common and well-established continuum model for the descrip-
tion of ionic concentrations and the electrostatic interactions is the Poisson-
Boltzmann equation (Lu et al., 2008). It is one of the most important equa-
tions in computational chemistry and often used to calculate ionic concentra-
tions around molecules and the applications considered here, also at surfaces
(Talasaz et al., 2006). The domain Ω is partitioned into two parts: the
subdomain Ωm of the molecule and the subdomain Ωs of the solvent. Both
regions are modeled by the nonlinear Poisson-Boltzmann equation

−∇ · (ε∇u)−
K∑
j=1

cjqje
−βqju=

N∑
i=1

piδ(x− xi) in Ωs, (11a)

−∇ · (ε∇u) =
N∑
i=1

piδ(x− xi) in Ωm, (11b)

where ε is again the permittivity, cj is the bulk concentration of free ion
species j with charge qj , pi is a charge at xi in Ωm, and β = 1/kT , where
k is the Boltzmann constant and T is the temperature.

On the interface between the two subdomains Ωm and Ωs, continuity
equations for the potential u and the dielectric displacement (i.e., the per-
mittivity times the normal derivative),

[u] = 0, (12)[
ε
∂u

∂n

]
= 0, (13)

where [.] denotes the difference of the limits in Ωm and in Ωs analogously to
equations (2).

A leading special case of the pbe is the pbe for a symmetric, 1 : 1
electrolyte (Holst et al., 2012). With K = 2, the bulk concentration cj = c,
and qj = (−1)jq, equation (11a) simplifies to

−∇ · (ε∇u) + 2cq sinh(βqu) =

N∑
i=1

piδ(x− xi). (14)

This equation can be solved by various numerical methods such as the
finite-difference method, the finite-volume method, or the boundary-element
method (Lu et al., 2008). Nowadays several pbe solvers such as DelPhi
(Honig and Nicholls, 1995), grasp (Nicholls et al., 1991), mead (Bashford
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and Gerwert, 1992), uhbd (Davis et al., 1991), pbeq (Im et al., 1998), apbs
(Baker et al., 2000; Holst et al., 2000), and afmpb (Lu et al., 2010a), are
available for biochemistry and biophysics.

A stochastic version of the Poisson-Boltzmann equation was also used
to quantify fluctuations in nanowire field-effect biosensors (Heitzinger et al.,
2010a).

3.2.3 PROPKA

An empirical method for the calculation of protein charges and pKa values
is the fortran program propka (Li et al., 2005; Bas et al., 2008; Olsson
et al., 2011; Rostkowski et al., 2011). This method uses the structure of
proteins from PDB files to compare it with empirical data. An initial guess
for the pKa value pKwater

a of a titrable group in water is perturbated by the
change ∆pKwater→protein

a of the pKa value due to the protein, i.e., the pKa

value is
pKa = pKwater

a + ∆pKwater→protein
a (15)

according to (Søndergaard et al., 2011). Here pKwater
a is obtained empirically

and is well-known, while ∆pKwater→protein
a is calculated by propka.

From comparison with empirical data and investigations of the structure
of the proteins in PDB files, the main contributions to ∆pKwater→protein

a have
been detected and approximated. In propka 3.1, these contributions are

∆pKwater→protein
a = ∆pKdesolv

a + ∆pKHB
a + ∆pKRE

a + ∆pKQQ
a , (16)

where ∆pKdesolv
a describes the desolvation effects, ∆pKHB

a describes the
hydrogen-bond interactions, ∆pKRE

a describes the contribution due to elec-
trostatic reorganization energies, and ∆pKQQ

a describes the Coulombic in-
teractions. The Coulomb contribution due to charge-charge interactions is
described for the protein residue i and a charge j from a charged or ionizable
group as

∆pKQQ
a,i =

244σij
εrij

wQQ(rij), (17a)

wQQ(rij) =


rij
rmin

if rij ≤ rmin,
rij−rmin

rmax−rmin
if rmin ≤ rij ≤ rmax,

0 if rij ≥ rmax,
(17b)

σij =



−1 if (i ∈ acids and j ∈ bases)
or (i ∈ bases and pKa,i < pKa,j),

+1 if (i ∈ bases and j ∈ acids)
or (i ∈ acids and pKa,i > pKa,j),

0 else,

(17c)
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where 244 is the Coulomb’s-law coefficient in pKa units, ε is the dielectric
constant, and σ gives the direction of the pKa shift. Furthermore rij is the
distance between the charge centers and w is a weight function.

Short-distance contributions ∆pKHB
a,i from hydrogen bonds or contribu-

tions ∆pKRE
a,i from reversed hydrogen bonds are modeled as

∆pKHB
a,i =

{
cHBwHB(rij) cos θ if θ ≥ 90◦,

0 else,
(18a)

wHB(rij) =


1 if rij ≤ rmin,
rij−rmin

rmax−rmin
if rmin ≤ rij ≤ rmax,

0 if rij ≥ rmax,
(18b)

where cHB is a fitted constant, w is a weight function, and θ is the angle
between the hydrogen bond and the hydrogen acceptor. Furthermore rij is
the hydrogen-bond distance.

The desolvation effect due to nearby, non-hydrogen atoms (k = 1, . . . , N)
with volume Vk is calculated as

∆pKdesolv
a,i = c

N∑
k=1

Vk
r4ik
, (19)

where c is an empirically determined constant and where the center of the
atom k is a distance rik away from the center of residue i.

The charge of the molecule is the sum of the charges of the single amino
acids

∑
qi. The charge qi of the amino acid i can be calculated as (De Vico

et al., 2010)

qi =
10pKa,i−pH

1 + 10pKa,i−pH
. (20)

3.3 Summary

In summary, many approaches for the simulation of the partial charges of
molecules, and in particular of dna and proteins, have been developed. The
main advantage of empirical models is the very fast prediction of pKa values
and charges with simulation times in the seconds range. Since these meth-
ods contain parameters that have been fitted to a sample data set, they are
expected to work reliably only for molecules similar to the sample set. Hence
more physically motivated methods are desirable, but come at a computa-
tional cost. In any case, empirical methods provide good approximations for
many proteins and other biomolecules.

The simulation of dna is facilitated by their, in comparison, simple and
periodic structure. The structure of the biomolecules also plays a crucial role
for the pKa value and the partial charge, e.g., proteins have different charges
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Physically motivated Computational cost
Monte-Carlo methods ++ −
Continuum models + +
Empirical models − ++

Table 1: Comparison of the main approaches to the simulation of boundary
layers in field-effect sensors.

if they are folded or unfolded. Hence it is often not possible to model and
simulate the charging state of molecules accurately within feasible time or
with feasible computational resources.

All methods have their specific advantages and none is better than the
rest regarding all criteria (see Table 1). Hence this area continues to be one
of active research and it is highly relevant for the quantitative understanding
of affinity based sensors.

Using the methods summarized here, the charge concentration in bound-
ary layers as they occur in nanowire field-effect sensors can be simulated.
Furthermore, a transport model for the charges in the semiconducting nanowire
is needed in order to simulate the whole sensor system. This is discussed in
the next section.

4 The current through the nanowire transducer

A realistic model for the charge transport through the nanowire transducer
must be three-dimensional because of the real-world boundary conditions,
namely the location of the source, drain, and backgate contacts (Stern et al.,
2007a; Nair and Alam, 2007; Elfström et al., 2007; Elfström and Linnros,
2008).

In this section, we present a continuummodel for charge transport through
nanowires. Various models for particle transport in semiconductors have
been developed focusing on different aspects; the two main approaches are
the Boltzmann equation, equations derived thereof such as the drift-diffusion
equations and diffusion-type equations (Heitzinger and Ringhofer, 2011), and
Monte-Carlo methods. For the purposes of the simulation of field-effect sen-
sors, continuum models are well-suited. The important aspect in field-effect
sensors are the boundary layer and minute changes therein, and not so much
advanced effects of charge transport in nanoscale structures.

In this simulation step, the boundary layer (the microscopic part of the
model) and charge transport (the macroscopic part of the model) are joined
in a self-consistent manner.
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4.1 The drift-diffusion-Poisson system

The electric potential V is the solution of the Poisson equation

−∇ · (ε(x)∇V (x)) = ρ(x) (21)

for the electric potential V , where ρ(x) is the charge concentration and
x ∈ Ω ⊂ R3. When modeling semiconducting materials, the charge con-
centration includes the charge carriers, i.e., the electron concentration n and
the hole concentration p. Furthermore, the doping concentration Cdop of the
semiconductor is also part of the charge concentration. Hence we have the
charge concentration for semiconductors defined as

ρsemi(x) := q(p(x)− n(x) + Cdop(x)), (22)

where q is the elementary charge.
The concentrations n and p of the charge carriers are the solutions of the

drift-diffusion equations

∇ · Jn = R, (23a)
∇ · Jp = −R, (23b)

Jn = Dn∇n− µnn∇V, (23c)
Jp = −Dp∇p− µpp∇V, (23d)

where Dn and Dp are the electron and hole diffusion coefficients, µn and µp
are their mobilities, Jn and Jp are their current densities, and R denotes the
recombination rate (Markowich et al., 1990; Selberherr, 1984). An important
model for the recombination rate is the Shockley-Read-Hall recombination
rate

RSRH :=
np− n2i

τp(n+ ni) + τn(p+ ni)
, (24)

where ni denotes the intrinsic charge concentration and τn and τp are the
relaxation times of the electrons and holes, respectively. Furthermore, we
assume that the Einstein relations Dn = UTµn and Dp = UTµp hold, where
UT is the thermal voltage.

4.2 Self-consistent simulations of sensor systems

We have now all parts for a self-consistent model of nwfets. We consider
the typical structure of a nanowire sensor as depicted on the left-hand side
of Fig. 3. The nanowire is covered by a thin, dielectric layer of oxide and
surrounded by the aqueous solution containing the target molecules. Hence
the simulation domain Ω can be partitioned into three subdomains ΩSi, Ωox,
and Ωliq corresponding to these three materials. At the interface Γ between
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Aqueous Solution - PBE
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Oxide - Poisson Equation
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Oxide
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(a) Device structure. (b) Surface layer.

Figure 3: (a) Schematic diagram of the nanowire sensor; the different equa-
tions used in the simulation are indicated. (b) A nanowire functionalized
with ssdna as probes without any target molecules (bottom) and a nanowire
functionalized with ssdna with a target ssdna strand (dsdna, top).

the nanowire surface and the liquid, the charge concentration exhibits a fast
varying spatial structure which leads to the multiscale problem discussed in
Section 2. To simplify notation, the x-axis is always normal to the smooth
interface Γ located at x = 0.

The equation for the potential is now the homogenized Poisson equation

−∇ · (ε(x, y, z)∇V (x, y, z)) =

{
ρ(x, y, z) in ΩSi ∪ Ωox,

0 in Ωliq,
(25a)

V (0+, y, z)− V (0−, y, z) =
ζ(y, z)

ε(0+)
on Γ, (25b)

εliq∂xV (0+, y, z)− εox∂xV (0−, y, z) = −γ(y, z) on Γ, (25c)

where 0+ denotes the limit at the interface in the outside of the nanowire,
while 0− is the limit in the inside. The cumulative effect of the fast vary-
ing charge concentration in the surface layer is now given by the macro-
scopic dipole-moment density ζ and the macroscopic surface-charge density γ
known from (3); they are calculated by the models in Section 3.

After modeling the charges in the boundary layer, we now turn to the
charge concentration ρ in the remaining materials. In the semiconductor,
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i.e., in ΩSi, the Poisson equation is

−∇ · (εSi∇V ) = ρsemi(n, p), (26)

where ρsemi(n, p) is given by the drift-diffusion equations in Section 4.1.
The aqueous solution Ωliq is described by the Poisson-Boltzmann equa-

tion already discussed in Section 3.2.2. The charge concentration on the
right-hand side is a hyperbolic sine (in the case of 1:1 electrolyte) with the
bulk ionic concentration as a factor.

At the source, drain, and backgate contacts, Dirichlet boundary condi-
tions hold, as well as at the electrode in the liquid if there is one (Lu et al.,
2010b). Zero Neumann boundary conditions, i.e., vanishing electric fields,
are used everywhere else. The inclusion of backgate contacts is crucial, since
the operating regime of the sensor can be adjusted and optimized in this way
(Baumgartner et al., 2011a,b).

The values of ζ and γ can be stored in look-up tables depending on the
surface potential. Then the whole sensor can be simulated self-consistently
using an enhanced Scharfetter-Gummel iteration scheme so that no computa-
tional penalty is paid compared to solving the classical drift-diffusion-Poisson
system (Baumgartner and Heitzinger, 2012).

5 Summary

Nanowire sensors have been demonstrated experimentally in recent years and
they are a technology that is currently being developed. Nanowire are ex-
tremely well-suited for sensing purposes due to their single-crystalline struc-
ture and their high surface-to-volume ratio.

Quantitative understanding of this new technology is crucial for the ra-
tional design and the optimization of various devices. The quantitative sim-
ulation of field-effect biosensors based on nanowires poses new challenges
and the state-of-the-art of sensor simulation in this area is summarized here.
Since this field has been receiving more and more attention, more work is
certainly forthcoming.

The boundary layer containing the biomolecules at the nanowire trans-
ducer is responsible for sensitivity and selectivity. Therefore the boundary
layer and its effect on the transducer are the crucial aspects of these field-
effect sensors. Regarding modeling and simulation, these two aspects are
novel compared to the well studied area of semiconductor devices and new
intriguing questions arise. Hence the modeling and simulation of field-effect
sensors goes beyond the modeling and simulation of semiconductor transis-
tors.

The boundary layer must be modeled as realistically as possible. A math-
ematical method to achieve this in face of the multiscale aspect of the prob-
lem is to homogenize the partial differential equations that model the sys-
tem. This allows us to simulate large structure while including effects on
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the microscopic length scale, i.e., the length scale of single molecules in the
boundary layer.

The screening of the partial charges of the biomolecules in the boundary
layer can be simulated by continuum models such as the Poisson–Boltzmann
equation and by atomistic models such as Metropolis-Monte-Carlo algo-
rithms while calculating the partial charges by a model such as propka.

Using self-consistent models, all relevant physical and geometrical prop-
erties can be included in the simulations. This makes it possible to provide
realistic simulations and to predict sensitivity.
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