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In this work, a Monte-Carlo algorithm in the constant-voltage ensemble for the calculation of 3d charge concentrations at charged
surfaces functionalized with biomolecules is presented. The motivation for this work is the theoretical understanding of biofunc-
tionalized surfaces in nanowire field-effect biosensors (BioFETs). This work provides the simulation capability for the boundary
layer that is crucial in the detection mechanism of these sensors; slight changes in the charge concentration in the boundary layer
upon binding of analyte molecules modulate the conductance of nanowire transducers. The simulation of biofunctionalized sur-
faces poses special requirements on the Monte-Carlo simulations and these are addressed by the algorithm. The constant-voltage
ensemble enables us to include the right boundary conditions; the DNA strands can be rotated with respect to the surface; and
several molecules can be placed in a single simulation box to achieve good statistics in the case of low ionic concentrations
relevant in experiments. Simulation results are presented for the leading example of surfaces functionalized with PNA and with
single- and double-stranded DNA in a sodium-chloride electrolyte. These quantitative results make it possible to quantify the
screening of the biomolecule charge due to the counter-ions around the biomolecules and the electrical double layer. The re-
sulting concentration profiles show a three-layer structure and non-trivial interactions between the electric double layer and the
counter-ions. The numerical results are also important as a reference for the development of simpler screening models.

1 Introduction

The motivation for this work is to provide simulations of the
electrostatics near solids that are immersed in an electrolyte
and that are functionalized with biomolecules. The struc-
tures considered are, e.g., the biofunctionalized surfaces of
field-effect biosensors and biological membranes with pro-
teins. The free ions in the electrolyte are influenced by the
surface charge of the solid and the partial charges of the bio-
molecules, i.e., the ions form an electric double layer at the
surface and they can act as counter-ions around the molecules.
The double layer and the counter-ions interact with one an-
other.

The electrostatics of these boundary layers are crucial for
the understanding of nanowire field-effect biosensors. Recent
experiments have shown the possibility of detecting biomole-
cules by the effect of their intrinsic charge onto the conduc-
tance of a semiconducting nanowire transducer.1–4 The sur-
face is functionalized with PNA strands, DNA strands, or an-
tibodies. When the complementary DNA strands or matching
antigens bind to the surface receptors, the charge distribution
at the surface changes which modulates the electrostatic po-
tential in the semiconductor and thus its conductance. The
main advantage of these biosensors is direct, label-free opera-
tion.
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Despite the remarkable experimental progress in this field,
the theoretical understanding of the field-effect sensors is still
incomplete.5–9 In order to arrive at a quantitative understand-
ing, a precise knowledge of the charge concentration in the
surface layer is necessary and can only be provided by simu-
lations.

The standard continuum model for the electrostatics of bio-
molecules is the mean-field Poisson equation with a Boltz-
mann term for the concentration of the free charges, then
called the Poisson-Boltzmann equation.10–12 In the contin-
uum model, the free charges are treated as point charges and
included using Boltzmann statistics. The classical Poisson-
Boltzmann theory is successful to study the planar electric
double layer and the electrolyte bulk. Also various modifi-
cations of the Poisson-Boltzmann approach have been devel-
oped and applied to study the electric double layer around a
uniformly charged spherical colloid particle13 and around an
infinitely large and uniformly charged cylinder.14

However, there are experimental results which show the ef-
fect of ion size on diffusion in alkali halides15 or at the sur-
face16 and that cannot be explained by Poisson-Boltzmann
theory. Also recent simulations17–19 show that both the
electrostatic and hard-sphere collisions are sensitive to ion
size. To include the finite-size effects of small ions, vari-
ous methods have been developed. These include canoni-
cal and grand-canonical Monte-Carlo (MC) simulations20–23

and density-functional theory.18,24 The advantages and disad-
vantages of these methods for mixed-sized counter-ion sys-
tems are discussed in18,24–26. MC simulations agree better
with experimental data since the finite size of the ions is
taken into account. Although electrical double layers have
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been extensively studied near planar, uniformly charged sur-
faces23,27,28 and around isolated, infinitely large and uni-
formly charged cylinders,26,29,30 the ionic concentrations near
groups of charged objects with various geometries and sizes at
surfaces have been investigated much less.

Since field-effect sensors are extremely sensitive to screen-
ing effects and large voltages are applied across the devices
in experiments, correct boundary conditions must be used in
self-consistent simulations. Furthermore, in experiments very
low ionic concentrations are used. To arrive at good statis-
tics in MC simulations, this implies that a large simulation
domain must be used. Since the distance between biomole-
cules is also small in experiments,31 this requires the capa-
bility to include several molecules in a single simulation do-
main (see Fig. 1). Additionally, since the electrolyte is usually
buffered, it is essential to consider not only mixed-size, but
also mixed-valence ionic systems. Therefore the valence of
the ions can be specified as an input parameter in the MC al-
gorithm. Finally, to calculate the electrostatic free energy of
various orientations of the biomolecules,12,32–34 the PNA and
DNA strands can be rotated in the MC algorithm.

These requirements were taken into account in the devel-
opment of the MC algorithm and hence this work solves the
problem of simulating the electrostatics of biofunctionalized
surfaces at the microscopic scale for sensor applications. Here
the microscopic length scale is the length scale of single
molecules at the surface and it is typically in the range of a
few nanometers to a few dozen nanometers. The macroscopic
length scale is the length scale of a cell or of a whole sensor
and it is larger by several orders of magnitude. The multi-
scale problem of considering both length scales at the same
time was solved in35. By homogenization, the original Pois-
son equation with a fast varying charge concentration was re-
placed by a homogenized problem consisting of the Poisson
equation with two interface conditions at the surface. The val-
ues determining the interface conditions are easily evaluated
from the MC simulation results presented here. This homog-
enization result in conjunction with a charge-transport model
makes it possible to calculate the electric current through field-
effect sensors once the charge concentration in the boundary
layer has been calculated. Both models together, the micro-
scopic and macroscopic, provide self-consistent simulations
of field-effect biosensors.

The rest of this paper is organized as follows. In Sec-
tion 2, the MC algorithm and all the interaction potentials be-
tween the various charge carriers are described in detail. In
Section 3, results from the calculation of the charge concen-
trations at silica surfaces functionalized with peptide nucleic
acid (PNA), single-stranded deoxyribonucleic acid (ssDNA), or
double-stranded deoxyribonucleic acid (dsDNA) are presented
and discussed. Finally, Section 4 concludes the paper.

2 The Monte-Carlo Algorithm

First, we summarize the extension of the Metropolis MC
algorithm23 to the constant-voltage ensemble.28 We treat
the constant-voltage ensemble as an extension of the grand-
canonical ensemble, i.e., the voltage applied at the electrodes
is a controlled parameter. Another parameter that has to be
kept constant during the simulation is the bulk ionic concen-
tration. This is achieved using the chemical potential energy
that has to be calibrated by the iterative algorithm described
below. Based on this discussion, the extensions to include
molecules and the various interaction potentials between the
charge carriers are then explained in detail.

2.1 The simulation domain

The simulation domain (see Fig. 1) consists of a finite box
[−W,W ]× [−W,W ]× [−H,H] with H ≥ 2W that is bounded
in the z-coordinate by two sheets. The interior of the box
contains an electrolyte solution and one or more immobile
(macro-)molecules arranged in a Cartesian grid. The x- and
y-directions are parallel to the sheets and periodic boundary
conditions are used in these directions. The box has hard, im-
penetrable walls at z = −H and z = H carrying uniform sur-
face charges with densities ρ and 0, respectively. Two addi-
tional charge densities σ1 and σ2 are associated with the sheets
and are adjusted to the desired potential difference. If there is
only one molecule, it is linked at the center of the lower wall
at (0,0,−H). If the box contains more molecules, they are ar-
ranged in an equidistant grid and each molecule is centered in
its grid cell.

 
 

Fig. 1 The simulation domain. Here it contains 2×2 molecules.

The box confines N1 cations with charge q1, N2 anions
with charge q2, and N3 partial charges of the molecules with
charges q3,i (e.g., the phosphate groups of the DNA backbone).
It is required that the whole system is electrically neutral, i.e.,
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that the equation

4W 2(σ1 +σ2 +ρ)+N1q1 +N2q2 +
N3

∑
i=1

q3,i = 0

holds.
All types of ions are modeled as charged hard spheres with

a diameter of 0.3nm and water is considered as a continuous
structure-less medium with a constant relative permittivity of
εr = 80. To speed up electrostatics calculations, it is further-
more assumed that εr = 80 everywhere in the simulation box.
The minimal separation between ions and the boundaries is
l = 0.1nm. The temperature of the system is T = 300K.

In this work the PNA, single-stranded DNA, and double-
stranded DNA oligomers are modeled as impenetrable cylin-
ders with two hemispheres at the top and at the bottom. The
oligomers consist of a certain number of base pairs that de-
termines their height (each base pair has a height of 0.34nm)
and they have a radius of 1nm. They are bound orthogonal to
the surface so that a hemisphere touches the surface. The PNA
oligomers are uncharged in the model, whereas the ssDNA and
dsDNA oligomers carry point charges of one electron charge
at the location of each phosphate group of their backbones.
Thus the partial charges are distributed along a helix or a dou-
ble helix in the right rotational direction with a distance from
the cylinder surface equal to the oxygen atom radius of 60pm.

2.2 Metropolis Monte-Carlo simulation in the constant-
voltage ensemble

The simulation samples the configuration space by randomly
changing the placement of ions in the simulation box while
avoiding overlaps22,36 and by transferring a random amount
of charge between the sheets.28

In the sequel we use the notations of Ref.20. In the canoni-
cal ensemble (i.e., N, V , T are constant), we denote the parti-
tion function for a system of N particles from the same species
(the anions or the cations) in a volume V at temperature T
by QN and we denote the total energy of the system in state N
by EN . The partition function QN can be factorized into a
product of kinetic (ideal gas) and potential (excess) parts,

QN = Qig
N Qex

N =
V N

N!Λ3N Qex
N , (1)

where the volume V equals 8(W− l)2(H− l) and Λ is the ther-
mal de-Broglie wavelength of the particles in an ideal gas at
the specified temperature, i.e., Λ =

√
h2/(2πmkBT ). The ex-

cess part in the canonical ensemble is

Qex
N =V−N

∫
exp(−βEN(r))dr.

We denote the difference in electrostatic potential energy
between two configurations by Utot and the chemical potential

energy by µ . (To simplify notation we write Utot instead of
∆Utot in the following.) As usual T denotes the temperature,
kB the Boltzmann constant, and β := 1/(kBT ). The probabi-
lity that the system occupies state N is pN = Q−1

N exp(−βEN)
and therefore the ratio of the probabilities of the old state N
and the new state M can be written as

pN

pM
= ν exp(−β∆E),

where ν := QM/QN and ∆E := EN −EM depends on the en-
semble of the system. The transition to the next configuration
is possible by four processes and is chosen with the following
probabilities P = pN/pM:

(1) translation of an ion with probability
P = min(1,exp(−βUtot)),

(2) insertion of an ion with probability
P = min(1,ν exp(−βUtot +β µ)),

(3) deletion of an ion with probability
P = min(1,ν exp(−βUtot−β µ)), and

(4) charge transfer between the two sheets with probability
P = min(1,exp(−βUtot +βAΦσ̂)).

In case (1), the translation of an ion, the temperature T , the
number of the ions (N = M) and the volume of the system V
are constant. Therefore, Qig

N Qex
N = Qig

MQex
M = Q(N,V,T ) and

hence ν = 1. Furthermore the total energy of the system in a
certain state is equal to the electrostatic potential in this state,
i.e., ∆E =Utot.

In cases (2) and (3) ions are exchanged with the surround-
ing, but the chemical potential µ , the temperature T , and the
volume V remain constant and we have

Q(µ,V,T ) = Q(N,V,T )∑
N

exp(β µN).

Hence for the insertion of an ion we have ∆E = ∆Utot − µ

and ν = Qig
N+1/Qig

N = V/(N + 1)Λ3. Case (3), the deletion
of an ion, is symmetrical to the insertion and we obtain ν =
(NΛ3)/V and ∆E = ∆Utot +µ .

In order to retain the charge neutrality of the simulation box,
insertion and deletion of ions are always performed pairwise,
i.e., both an anion and a cation are inserted or deleted in one
step. We therefore rewrite the partition function QN from (1)
for two types of particles, namely anions and cations, as

QN1+N2 = QN1QN2 =
V N1

1 V N2
2

N1!N2!Λ3N1
1 Λ

3N2
2

Qex
N1

Qex
N2
.

This yields µ = ∑i µi and ν = ∏i νi, where the sum is over all
ion species i.

1–11 | 3



In case (4), the charge transfers between sheets, the voltage
difference Φ between the sheets remains constant additionally.
The partition function can be written as an integral over the
possible charge densities σ of the sheet,

Q(N,V,T,Φ) =
∫

σ

Q(N,V,T )exp(βAΦσ)dσ ,

where A is the area of the sheet. In this case we have ν = 1 and
∆E = ∆Utot−AΦσ̂ , where the charge density σ̂ is transferred
between the two sheets (see also Section 2.4). The equation
σ1 =−σ2 always holds for the charge densities of the sheets.
Since the whole system is neutral, the number of ions is chosen
so that the charge of the molecules and the surface charge ρ

are compensated.

2.3 The chemical potential

The chemical potential µi of the ith species is defined as the
change in the Helmholtz free energy upon insertion of a test
particle, i.e.,

µi =

(
∂AH

∂N

)
N jV T

,

where the index means that the volume V , the temperature T ,
and the other particle numbers N j ( j 6= i) are constant. The
Helmholtz free energy of the canonical ensemble is given by

AH =−kBT lnQ(N,V,T )

=−kBT lnQig(N,V,T )− kBT lnQex(N,V,T )

= Aig
H +Aex

H

and hence the chemical potential is

µi =
∂Aig

H
∂N

+
∂Aex

H
∂N

= µ
ig
i +µ

ex
i .

Therefore the excess chemical potential is the difference be-
tween the chemical potential of a given species and that of an
ideal gas under the same conditions. The chemical potential
of an ideal gas is given by

µ
ig
i =−kBT

∂ lnQig

∂N
=−kBT ln

Qig
N+1

Qig
N

=−kBT ln
V

NΛ3 ,

where ρi := Λ3N/V is the target density of the ith species.
This yields

µi = kBT lnρi +µ
ex
i . (2)

The excess chemical potential µex
i can be calculated itera-

tively21 as follows. After starting with an estimated value
like µex

i = −1 or µex
i = 0, in each iteration step n the value

of µex
i,n is calculated by

µ
ex
i,n := µi,n−1− kBT ln〈ρ〉n, (3)

where 〈ρ〉n is the average particle density of the previous step.
Combining the probabilities of insertion or deletion of an

ion (see Section 2.2) and the identity Λ3 = exp(lnΛ3) with (2)
and (3), we find that the probabilities do not depend on the
thermal de-Broglie wavelength, i.e., Λ = 1.

2.4 Calculation of the electrostatic potential energy

The total potential energy Utot of the system can be divided
into several terms due to the superposition principle and hence
we can consider the interaction between each pair of charge
types and calculate the corresponding potential energies sep-
arately. In the following, the indices I, S, and P denote ions,
sheets, and partial charges of the molecules, respectively.

Table 1 The variables and their units or values.

Meaning Variable Unit or value
Vacuum permittivity ε0 8.8541878 ·10−3 C/(V nm)

Elementary charge q 1.6021917 ·10−19 C
Boltzman constant kB 1.3806 ·10−23 CV/K

β 2.4144 ·1020 (CV)−1

Thermal de-Broglie
wavelength Λ nm

Number of particles N 1
Temperature T K
Ionic concentration c M
Surface charge density ρ,σ , σ̂ C/nm2

Charge qi C
Valence z 1
Electrostatic potential

energy U J
Helmholtz free energy AH J
Voltage Φ V
Chemical potential µ J
Length W,H,L,

d,h,r nm
Area A nm2

Volume V nm3

The movements of charges, resulting in changes in the po-
tential energy terms, can be divided into three groups:

1. Utot = UIS +UII +UIP by translation, insertion, or dele-
tion of ions,

2. Utot = USS +USI +USP by charge transfer between the
two sheets, and

3. Utot =UPS +UPI +UPP by movements and deformations
of the molecule.
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In the following we describe the calculations of the poten-
tial energy that are required for the probability calculation in
the MC loop. The variables and their units or values are sum-
marized in Table 1.

The term UIS. In the grand-canonical ensemble, the term
UIS describes charge-sheet interactions by

UIS =−
1

2ε
qiσr, (4)

where qi is a particle charge, ε is the permittivity, σ is the
charge density of the sheet, and r is distance between the ion
and the sheet, which is measured along the z-axis. We denote
the elementary charge by q and the valence of an ion by zi =
qi/q. To save computation time, we set q∗ := q

√
β/(4πε),

z∗i := q∗zi, and σ∗ := q∗σ/q. Hence the calculation for the ith
ion is simply

βUIS,i =−2πz∗i σ
∗r,

where the values z∗i are kept in a look-up table.

The term UII . The second term includes two types of
Coulomb charge-charge interaction: the interaction UC

II of
ion i with ions inside the cell and the interaction Uout

II of ion i
with its mirror images in the surrounding cells to treat the
long-range contributions of the Coulomb forces.23,27

The term UC
II is the Coulomb charge-charge interaction

UC
II =

1
4πε

qiq j

r
between two ions in a homogeneous medium, where ql is a
particle charge and r is the distance between the ions. With
the notation above we have

βUC
II,i = ∑

j, j 6=i

z∗i z∗j
r

.

Analogously to the method described in Refs.23,27, the in-
teraction between the test particle i and a charged plane of
size L×L carrying a uniform charge density of q j/L2 is writ-
ten as

Uout
II (i, j) =U∞

II (i, j)−U in
II (i, j),

where U∞
II (i, j) is the potential energy of the particle i and an

infinite sheet corresponding to the ion q j. This potential en-
ergy is given by (4) with σ = q j/L2 and r = d. The second
term is the interaction between the test particle i and an inside
charged plane and is given by

U in
II (i, j) =

qi

4πε

q j

L2

∫ L/2

−L/2

∫ L/2

−L/2

dxdy
r(x,y)

=
qi

4πε

q j

L

(
−2ln

(
−1+2

√
1/2+(d/L)2

1+2
√

1/2+(d/L)2

)
−4

d
L

arctan
(

1

4d/L
√

1/2+(d/L)2

))
, (5)

where d is the distance between a particle and a plane along
the z-axis. This yields

βUS
II,i = β ∑

j, j 6=i

(
U∞

II (i, j)−U in
II (i, j)

)
= 2 ∑

j, j 6=i

z∗i z∗j
L

(
−π

d
L
+ ln

(
−1+2

√
1/2+(d/L)2

1+2
√

1/2+(d/L)2

)
+2

d
L

arctan
(

1

4d/L
√

1/2+(d/L)2

))
.

The term UIP. The term UIP, i.e., the interaction between
an ion and a partial charge of a molecule, is calculated analo-
gously to UII .

The term USS. In the constant-voltage ensemble, the charge
density σ̂ is transferred between the two sheets. We denote the
distance between the sheets by d, the area of the sheets by A,
and the charge density of the sheet at z = −H by σ1 and the
density of the one at z=H by σ2. The charge transfer between
the two sheets can be described as an axially parallel transport
of charge q′ from an infinitesimal segment of one sheet to the
corresponding segment of the second sheet.

The term USS describes the interaction between the sheet of
area A and the infinite sheet. Using (4) with r = d and qi = q′

and integrating, we obtain

USS =−
1

2ε
σσ̂Ad, (6)

where we have used
∫

A q′dxdy = σ̂A. This yields

βUSS =−2πσ
∗
σ̂
∗Ad.

The terms USI and USP in the constant-voltage ensem-
ble. The charge transfer between two sheets can be treated
as a decrease of the charge density of one sheet by σ̂ and the
corresponding increase of charge density at the second sheet.
In the constant-voltage ensemble, the terms USI and USP de-
scribe the interactions between a sheet, whose charge density
is changed, and a point charge q j (the charge of an ion or a
partial charge of a molecule). Analogously to the calculations
for the term UII , we have to take into account the long-range
contributions from the rest of the boxes.

Again we split this term into the sheet-charge interaction
Uq

SI and the interaction between the sheet (of area A) and the
outside charged plane corresponding to the point charge q j,
i.e.,

USI( j) =Uq
SI( j)+

(
U∞

SI( j)−U in
SI ( j)

)
.

Using (5) with qi = σ̂A, where A = L2, we find

U in
SI ( j) =

σ̂

4πε
q j

∫ L/2

−L/2

∫ L/2

−L/2

1
r(x,y)

dxdy,
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where r(x,y) :=
√

x2 + y2 +d2 and d is the distance between
the sheet and the point charge.

The potential energy dUq
SI of q j due to an infinitesimal seg-

ment dxdy of the sheet with charge q′ = σ̂dxdy can be written
as

dUq
SI( j,x,y) =

q j

4πε

σ̂dxdy
r(x,y)

.

By integrating over all infinitesimal segments we find
Uq

SI( j) =U in
SI ( j).

The interaction U∞
SI( j) between the sheet of area A and the

infinite sheet corresponding to the point charge q j is found
from (6) using a charge density of σ = q j/L2 for the infinite
sheet. We have

U∞
SI( j) =− 1

2ε
σ̂q jr,

where r is distance between the ion and the sheet. Hence we
finally find

βUSI =−2π ∑
j

σ̂
∗z∗jr.

The terms UPI , UPS, and UPP. In this work we assume
the molecule to be rigid, and therefore we always have UPI =
UPS =UPP = 0.

3 Simulation results and discussion

We investigate surfaces functionalized with different types of
biomolecules, different surface charges, and different applied
voltages. In order to calculate the charge densities and the
amount of screening, we consider four different situations. In
the first situation, no molecules are present and an electric
double layer is formed. This situation provides the baseline
for the next simulations and a check of our simulations with
the large body of work on electric double layers. In the sec-
ond situation, an uncharged cylindrical molecule, i.e., PNA, is
present. In a sensor setting this means that the surface has
been functionalized, but no target molecules are present. In
the third situation, a charged cylindrical molecule, i.e., single-
stranded DNA, is present. This situation means that a strand of
ssDNA has bound to the PNA from the first situation and is be-
ing detected by the redistribution of charges. It can also mean
that the surface was functionalized with ssDNA and no tar-
get molecule is present yet. In the fourth situation, a charged
cylindrical molecule with twice the amount of charge, i.e.,
double-stranded DNA, is present. This situation means that
the probe strand from the third situation is now bound to a
complementary target strand.

In field-effect biosensors, the difference in the charge dis-
tribution between the second and third situations and between
the third and fourth situations is crucial for the functioning of
these sensors and provides the detection mechanism.
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Fig. 2 Density profiles for a 1:1 electrolyte and boxes containing
different numbers of dsDNA strands. Here and in the following
figures c is the concentration of the electrolyte, ρ is the surface
charge density of the sheet at −50nm, and V is the applied
electrostatic potential between the two sheets.

In the simulations the sheet that corresponds to the sensor
surface is located at at z = −50nm and the oligomers have
z-coordinates in the interval [−50,−44.6]nm. The simula-
tions are three-dimensional and the concentration profiles are
shown as functions of the z-coordinate. In general, the simu-
lation domain is not symmetrical around z = 0.

The simulation box can contain several molecules arranged
in a grid. Hence we first investigate the influence of the num-
ber of molecules in a box on the resulting concentration pro-
files all else being equal. Fig. 2 shows concentration profiles
for boxes containing 2× 2, 3× 3, 4× 4, and 5× 5 oligomers
under the same conditions. The small differences in the con-
centration profiles are due to the slightly different approxima-
tions made during the calculation of interactions between a
point charge and a sheet outside of the box (see Section 2.4).
In the following simulations, we use boxes containing 3× 3
oligomers and 100nm high, since for this size there are always
enough ions present to ensure good statistics in the MC loop.

Table 2 Nominal simulation parameters.

Salt concentration 0.01M
Potential difference 0mV
Surface charge density 0q/nm2

Macromolecule separation 8nm
Number of macromolecules 3×3

The nominal simulation parameters for the following simu-
lations are shown in Table 2. In the following, the normalized
surface charge density denoted by ρ is given in units of ele-
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Fig. 3 Concentration profiles for a 1:1 electrolyte for four types of
macromolecules under nominal simulation parameters.

mentary charges per square nanometer.
Concentration profiles for four different molecule types are

shown in Fig. 3: no molecules, PNA, ssDNA, or dsDNA are
present. The small influence of the steric effect of the un-
charged PNA compared to no molecules is seen. The simu-
lations with charged molecules show that the ionic concen-
tration in the intermolecular space differs substantially from
the bulk concentration. There is also a substantial change
in charge distribution after hybridization of a second strand.
Moreover the maximum value of cation concentration and the
minimum value of anion concentration are reached at the mid-
dle of the molecules.

The concentration of the molecules can be varied by vary-
ing the grid spacing. In Fig. 4, the concentration profiles for
ssDNA and dsDNA and three grid spacings of 5nm, 8nm, and
11nm are shown. The increase or decrease of the distance be-
tween the molecules leads to the expected change in the ion
concentration in the intermolecular space.

Figures 5 and 6 show the ionic concentration profiles for
different voltages applied across the box and for surface
charge densities of ρ = 0q/nm2 and ρ = −0.2q/nm2 at the
left sheet. The molecules considered are ssDNA and dsDNA.

If the left sheet is at a negative voltage (blue lines), the
sodium concentration (lines without marks) at the sheet and
in the intermolecular space is increased compared to the case
of no applied voltage (red lines). At the same time, the chlo-
rine concentration decreases. Fig. 6 quantifies how much this
effect is more pronounced when there is an additional charge
on the left sheet. The charge density of ρ =−0.2q/nm2 is the
charge density of silicon oxide in water at pH = 7. It is seen
that in this case the electric double layer and the charge cloud
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Fig. 4 Concentration profiles for ssDNA (top) and dsDNA (bottom)
for a surface charge density of ρ = 0q/nm2, for a bulk concentration
of 0.01M, and with no applied voltage. The molecules are placed on
grids with spacings of 5nm, 8nm, and 11nm.

of the counter-ions of the molecules overlap. Therefore they
have to be modeled self-consistently and cannot be separated:
this non-trivial behavior is clearly observed in the unmarked
blue lines in Fig. 5 and the unmarked red lines in Fig. 6.

If the left sheet is at a positive voltage (green lines), the
chlorine concentration (lines with circles) in the electric dou-
ble layer at the sheet is much increased. At the same time,
the concentration of the sodium counter-ions (lines without
marks) in the intermolecular space is decreased compared to
the case of no applied voltage (red lines). When there is an
additional negative charge on the left sheet (Fig. 6), there is no
increase of chlorine in the electric double layer. It is also worth
noting that the concentration of the sodium counter-ions is in-
creased for all applied voltages, significantly in some cases,
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Fig. 5 Concentration profiles for ssDNA and dsDNA for a surface
charge density of ρ = 0q/nm2 and for applied potentials of
−250mV, 0mV, and 250mV.

when the surface is negatively charged compared to the un-
charged case.

If there is no applied voltage, the concentration profiles for
different molecules and different surface charge densities of
the left sheet are similar to the concentration profiles shown in
Fig. 5.

In Fig. 7, concentration profiles for no molecules and for
PNA are shown. The charge density of the left sheet is varied
and there is no applied potential. The formation of electric
double layers at charged plates in an electrolyte is an often
studied situation, although usually high electrolyte concentra-
tions are used.17,18,25,37 The concentration profiles of cations
and anions are symmetric in both cases with respect to posi-
tive and negative surface charge densities of the sheet. This
verifies the MC algorithm.
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Fig. 6 Concentration profiles for ssDNA and dsDNA for a surface
charge density of ρ =−0.2q/nm2 and for applied potentials of
−250mV, 0mV, and 250mV.

In Fig. 8, we next investigate the situation where a nega-
tive charge on the left sheet and the negative charge of the
molecules determine the concentration profiles of the ions (top
figure). The charge of the sheets has been modified by an ap-
plied voltage as well (blue and red lines). If the net charge of
the plate is negative and much smaller than the total charge
of the DNA strands, the concentration profiles of the cations
show two peaks located near the cathode and within the inter-
molecular space (red and cyan lines in the top figure in Fig. 8).
Hence there are two areas with high cation concentration. As
the charge of the cathode decreases, the second peak becomes
wider until both areas overlap. The behavior of the anions is
simpler: their concentration increases with increasing distance
from the left sheet until it reaches the bulk concentration.

If the net charge of the sheet is positive (bottom figure in
Fig. 8), the behavior is more complicated and we can discern
three layers. The first and third peaks correspond to maxima
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Fig. 7 Concentration profiles for no molecules and for PNA and for
surface charge densities of ρ =−0.2q/nm2, ρ = 0, and
ρ =+0.2q/nm2 with no applied potential.

in the anion concentrations and the second peak corresponds
to maxima in the cation concentrations. By increasing the sur-
face charge, the second peak is shifted slightly away from the
plate, the cation concentration in the intermolecular space is
decreased, and the anion concentration in the third layer (near
the bulk) becomes higher than the cation concentration.

Thus we observe a complicated behavior of three interact-
ing layers: first, there is an electric double layer at the bound-
ary; second, there is a layer caused by the molecule charges;
and third, there is a boundary layer above the molecule layer
and between the bulk. The third layer is effectively a double
layer caused by the molecule layer.

In Figures 9 and 10 we study the modification of the con-
centration profiles when the electrolyte concentration is re-
duced from 0.02M to 0.01M and then to 0.005M. In Fig. 9
there is no charge on the left sheet, whereas in Fig. 10 the left
sheet is negatively charged.

The simulations show that the concentration of the counter-
ions around the molecules decreases slightly with decreasing
bulk electrolyte concentration. In three of the four cases, the
counter-ion concentrations show maxima in the intermolecu-
lar space and reach them approximately at the middle of the
intermolecular space. In the fourth case, when the left sheet
is negatively charged and ssDNA is present, the concentration
profiles are monotone.

The qualitative behavior of the concentration profiles in
these simulations is the same regardless of the bulk electrolyte
concentration. The salt concentration is an important quan-
titative, but not a crucial qualitative parameter in the simula-
tions. In practice it is chosen to fulfill experimental require-
ments such as DNA hybridization.
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Fig. 8 Concentration profiles for ssDNA and dsDNA for various
charge densities of the left sheet and for various applied potentials.

4 Conclusions

In this work, the simulation capability for ionic concentra-
tion profiles at charged surfaces functionalized with molecules
was developed. The model and algorithm are general enough
to consider any type of charged surface functionalized with
rigid molecules. The simulations are three-dimensional and
a potential difference can be applied across the simulation
box. The physical systems that can be simulated are, e.g., the
boundary layers of field-effect biosensors and biomolecules at
membranes. The algorithm is general enough to investigate
systems with low electrolyte concentrations and high surface
densities of molecules without excessive simulation times.

It was found that due to the presence of the charged
molecules, the ionic concentration profiles generally exhibit
a three-layer structure. The first layer is the electric double
layer due to the charged surface, the second layer is due to
counter-ions between the molecules, and the third layer is a
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Fig. 9 Concentration profiles for ssDNA (top) and dsDNA (bottom)
for a surface charge density of ρ = 0q/nm2 and for bulk electrolyte
concentrations of 0.005M, 0.01M, and 0.02M.

boundary layer above the layer of the biomolecules. The inter-
action between the electric double layer and the counter-ions
is non-trivial and necessitates this kind of quantitative investi-
gation.

The important simulation results for engineering applica-
tions are the concentrations of screening charges (i.e., counter-
ions) around different kinds of biomolecules. For example, it
was found that the bulk electrolyte concentration determines
the amount of counter-ions in a highly nonlinear manner. This
work is an essential building block for the quantitative under-
standing of field-effect biosensors, since it provides the under-
standing of the electrostatics of the crucial boundary layer.
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Fig. 10 Concentrations profiles for ssDNA (top) and dsDNA

(bottom) for a surface charge density of ρ =−0.2q/nm2 and for
bulk electrolyte concentrations of 0.005M, 0.01M, and 0.02M.
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8 M. J. Schöning and A. Poghossian, Electroanalysis, 2006, 18, 1893–1900.
9 H. Hunt and A. Armani, Nanoscale, 2010, 2, 1544–1559.

10 P. Debye and E. Hückel, Physikalische Zeitschrift, 1923, 24, 185–206.
11 K. A. Sharp and B. Honig, Annu. Rev. Biophys. Biophys. Chem., 1990,

19, 301–332.
12 A. H. Talasaz, M. Nemat-Gorgani, Y. Liu, P. Ståhl, R. W. Dutton, M. Ron-
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